摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-Fluoro-cyclohexanecarbonyl chloride | 888970-82-9

中文名称
——
中文别名
——
英文名称
4-Fluoro-cyclohexanecarbonyl chloride
英文别名
——
4-Fluoro-cyclohexanecarbonyl chloride化学式
CAS
888970-82-9
化学式
C7H10ClFO
mdl
——
分子量
164.607
InChiKey
YEKQCVHFSJQTNB-IZLXSQMJSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.28
  • 重原子数:
    10.0
  • 可旋转键数:
    1.0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.86
  • 拓扑面积:
    17.07
  • 氢给体数:
    0.0
  • 氢受体数:
    1.0

反应信息

  • 作为反应物:
    描述:
    1-(2-methoxyphenyl)-4-(2-(2-pyridylamino)ethyl)piperazine4-Fluoro-cyclohexanecarbonyl chloride三乙胺 作用下, 以 二氯甲烷 为溶剂, 反应 2.0h, 生成 trans-4-FCWAY
    参考文献:
    名称:
    Development of Fluorine-18-Labeled 5-HT1A Antagonists
    摘要:
    We have synthesized five fluorinated derivatives of WAY 100635, N-{2-[4-(2-methoxyphenyl)piperazino]ethyl)-N-(2-pyridyl)cyclohexanecarboxamide (4a), using various acids in place of the cyclohexanecarboxylic acid (CHCA, 2a) in the reaction scheme. The five acids are 4-fluorobenzoic acid (FB, 2b), 4-fluoro-3-methylbenzoic acid (MeFB, 2c), trans-4-fluorocyclohexanecarboxylic acid (FC, 2d), 4-(fluoromethyl)benzoic acid (FMeB, 2e), and 3-nitro-4-(fluoromethyl)benzoic acid (NFMeB, 2f) (see Scheme 1). These compounds were radiolabeled with fluorine-18, and their biological properties were evaluated in rats and compared with those of [C-11]carbonyl WAY 100635 ([carbonyl-C-11]4a), [Carbonyl-C-11]4a cleared the brain with a biological half-life averaging 41 min. The metabolite-corrected blood radioactivity had a half-life of 29 min. [F-18]FCWAY ([F-18]4d) gave half-lives and intercepts comparable to [carbonyl-C-11]4a in the brain, but the blood clearance was faster. [F-18]FBWAY ([F-18]4b) showed an early rapid net efflux from the whole brain, clearing with a biological half-life of 35 min. The metabolite-corrected blood half-life was 41 min. The comparable whole brain and blood half-lives for Me[F-18]FBWAY ([F-18]4c) were 16 and 18 min, respectively. For each compound, the corresponding carboxylic acid was identified as a major metabolite in blood. Fluoride was also found after injection of [F-18]4d. However, for all compounds there was a good correlation (R > 0.97) between the differential uptake ratio (DUR, (%ID/g) x body weight (g)/100) in individual rat brain regions at 30 min after injection and the concentration of receptors as determined by in vitro quantitative autoradiography in rat. Specific binding ratios [region of interest (ROI)/ cerebellum-1] in control studies for cortex (Ctx) and hippocampus (H) were higher for [carbonyl-C-11]4a and [F-18]4d compared to [F-18]4b and [F-18]4c. [F-18]4d has similar pharmacokinetic properties and comparable specific binding ratios to [carbonyl-11C]4a. Fifty nanomoles of 4a blocked only 30% of the specific binding of [F-18]4d, while complete blockade was obtained from co-injection of 200 nmol of 4a (H/Cb-1 from 17.2 to 0.6). [F-18]4b and [F-18]4c showed lower specific binding ratios than [carbonyl-C-11]4a and [F-18]4d. [F-18]4c was superior to [F-18]4b since its specific binding was more readily blocked by 4a. These studies suggest that [F-18]4c should be a useful compound to assess dynamic changes in serotonin levels while [F-18]4d, with its high contrast and F-18 label, should provide better statistics and quantification for static measurement of 5-HT1A receptor distribution.
    DOI:
    10.1021/jm980456f
  • 作为产物:
    参考文献:
    名称:
    Development of Fluorine-18-Labeled 5-HT1A Antagonists
    摘要:
    We have synthesized five fluorinated derivatives of WAY 100635, N-{2-[4-(2-methoxyphenyl)piperazino]ethyl)-N-(2-pyridyl)cyclohexanecarboxamide (4a), using various acids in place of the cyclohexanecarboxylic acid (CHCA, 2a) in the reaction scheme. The five acids are 4-fluorobenzoic acid (FB, 2b), 4-fluoro-3-methylbenzoic acid (MeFB, 2c), trans-4-fluorocyclohexanecarboxylic acid (FC, 2d), 4-(fluoromethyl)benzoic acid (FMeB, 2e), and 3-nitro-4-(fluoromethyl)benzoic acid (NFMeB, 2f) (see Scheme 1). These compounds were radiolabeled with fluorine-18, and their biological properties were evaluated in rats and compared with those of [C-11]carbonyl WAY 100635 ([carbonyl-C-11]4a), [Carbonyl-C-11]4a cleared the brain with a biological half-life averaging 41 min. The metabolite-corrected blood radioactivity had a half-life of 29 min. [F-18]FCWAY ([F-18]4d) gave half-lives and intercepts comparable to [carbonyl-C-11]4a in the brain, but the blood clearance was faster. [F-18]FBWAY ([F-18]4b) showed an early rapid net efflux from the whole brain, clearing with a biological half-life of 35 min. The metabolite-corrected blood half-life was 41 min. The comparable whole brain and blood half-lives for Me[F-18]FBWAY ([F-18]4c) were 16 and 18 min, respectively. For each compound, the corresponding carboxylic acid was identified as a major metabolite in blood. Fluoride was also found after injection of [F-18]4d. However, for all compounds there was a good correlation (R > 0.97) between the differential uptake ratio (DUR, (%ID/g) x body weight (g)/100) in individual rat brain regions at 30 min after injection and the concentration of receptors as determined by in vitro quantitative autoradiography in rat. Specific binding ratios [region of interest (ROI)/ cerebellum-1] in control studies for cortex (Ctx) and hippocampus (H) were higher for [carbonyl-C-11]4a and [F-18]4d compared to [F-18]4b and [F-18]4c. [F-18]4d has similar pharmacokinetic properties and comparable specific binding ratios to [carbonyl-11C]4a. Fifty nanomoles of 4a blocked only 30% of the specific binding of [F-18]4d, while complete blockade was obtained from co-injection of 200 nmol of 4a (H/Cb-1 from 17.2 to 0.6). [F-18]4b and [F-18]4c showed lower specific binding ratios than [carbonyl-C-11]4a and [F-18]4d. [F-18]4c was superior to [F-18]4b since its specific binding was more readily blocked by 4a. These studies suggest that [F-18]4c should be a useful compound to assess dynamic changes in serotonin levels while [F-18]4d, with its high contrast and F-18 label, should provide better statistics and quantification for static measurement of 5-HT1A receptor distribution.
    DOI:
    10.1021/jm980456f
点击查看最新优质反应信息

同类化合物

顺式-2-氯环己基高氯酸盐 顺式-1-溴-2-氟-环己烷 顺式-1-叔丁基-4-氯环己烷 顺式-1,2-二氯环己烷 顺-1H,4H-十二氟环庚烷 镓,三(三氟甲基)- 镁二(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-十七氟-1-辛烷磺酸酯) 铵2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-二十三氟十二烷酸盐 铜N-(2-氨基乙基)乙烷-1,2-二胺2-氰基胍二氯化盐酸 钾{[(十七氟辛基)磺酰基](甲基)氨基}乙酸酯 钠3-[(3-{[(十七氟辛基)磺酰基]氨基}丙基)(甲基)氨基]-1-丙烷磺酸酯 重氮基烯,(1-溴环己基)(1,1-二甲基乙基)-,1-氧化 辛酸,十五氟-,2-(1-羰基辛基)酰肼 赖氨酰-精氨酰-精氨酰-苯基丙氨酰-赖氨酰-赖氨酸 诱蝇羧酯B1 诱蝇羧酯 萘并[2,1-b]噻吩-1(2H)-酮 膦基硫杂酰胺,P,P-二(三氟甲基)- 脲,N-(4,5-二甲基-4H-吡唑-3-基)- 肼,(3-环戊基丙基)-,盐酸(1:1) 组织蛋白酶R 磷亚胺三氯化,(三氯甲基)- 碳标记全氟辛酸 碘甲烷与1-氮杂双环(4.2.0)辛烷高聚合物的化合物 碘甲烷-d2 碘甲烷-d1 碘甲烷-13C,d3 碘甲烷 碘环己烷 碘仿-d 碘仿 碘乙烷-D1 碘[三(三氟甲基)]锗烷 硫氰酸三氯甲基酯 甲烷,三氯氟-,水合物 甲次磺酰胺,N,N-二乙基-1,1,1-三氟- 甲次磺酰氯,氯二[(三氟甲基)硫代]- 甲基碘-12C 甲基溴-D1 甲基十一氟环己烷 甲基丙烯酸正乙基全氟辛烷磺 甲基三(三氟甲基)锗烷 甲基[二(三氟甲基)]磷烷 甲基1-氟环己甲酸酯 环戊-1-烯-1-基全氟丁烷-1-磺酸酯 环己烷甲酸4,4-二氟-1-羟基乙酯 环己烷,1-氟-2-碘-1-甲基-,(1R,2R)-rel- 环己基五氟丙烷酸酯 环己基(1-氟环己基)甲酮 烯丙基十七氟壬酸酯