摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,6,9,10-tetracyanoanthracene pentamethylbenzene complex | 130563-77-8

中文名称
——
中文别名
——
英文名称
2,6,9,10-tetracyanoanthracene pentamethylbenzene complex
英文别名
——
2,6,9,10-tetracyanoanthracene pentamethylbenzene complex化学式
CAS
130563-77-8
化学式
C11H16*C18H6N4
mdl
——
分子量
426.52
InChiKey
RWKXIZJGTPNSJX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.71
  • 重原子数:
    33.0
  • 可旋转键数:
    0.0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.17
  • 拓扑面积:
    95.16
  • 氢给体数:
    0.0
  • 氢受体数:
    4.0

反应信息

  • 作为反应物:
    参考文献:
    名称:
    光致电子转移反应的效率:马库斯反转区域在成对自由基离子对内返回电子转移中的作用
    摘要:
    在光致电子转移过程中,主要步骤是将激发态的电子能转化为以氧化还原(成对自由基-离子)对 (A + D A'-/D'+) 形式保留的化学能。在极性溶剂中,随着溶液中自由基离子的形成,双对的分离发生。由自由离子或成对反应形成的产物的量子产率通常很低,但是,由于返回电子转移反应 (A'-/D'+ - A + D),一种能量-与离子对的有用反应竞争的浪费步骤。本研究旨在研究控制这些返回电子转移反应速率的参数。在室温下,通过简单的芳烃供体在乙腈中对氰蒽的第一激发单线态进行电子转移猝灭后形成的离子对,测量自由基离子形成的量子产率。自由离子产率由分离速率和返回电子转移速率之间的竞争决定。通过假设分离速率恒定,可以得到返回电子转移过程的速率。发现这些高度放热的返回电子转移反应 (-AG,, = 2-3 eV) 强烈依赖于反应放热。随着放热性的增加,电子转移速率显示出显着降低(在该 AG 范围内,大约为 2
    DOI:
    10.1021/ja00167a027
  • 作为产物:
    参考文献:
    名称:
    马库斯反转区的电子转移反应:激发电荷转移复合物和成对自由基离子对之间的溶剂化和电子耦合的差异
    摘要:
    Les constantes de vitesse Sont 确定浇注 quelques 烷基苯(donneurs d'electrons) reagissant avec le dicyano-9,10- et tetracyano-2,6,9,10 蒽(accepteurs d'electrons)
    DOI:
    10.1021/ja00229a065
点击查看最新优质反应信息

文献信息

  • Contact and solvent-separated geminate radical ion pairs in electron-transfer photochemistry
    作者:Ian R. Gould、Ralph H. Young、Roger E. Moody、Samir Farid
    DOI:10.1021/j100158a031
    日期:1991.3
    The two primary intermediates that play a major role in determining the efficiencies of bimolecular photoinduced electron-transfer reactions are the contact (A.-D.+) and the solvent-separated (A.-(S)D.+ radical ion pairs, CRIP and SSRIP, respectively. These two species are distinguished by differences in electronic coupling, which is much smaller for the SSRIP compared to the CRIP, and solvation which is much larger for the SSRIP compared to the CRIP. The present work addresses the quantitative aspects of these and other factors that influence the rates of energy-wasting return electron transfer within the ion-pair intermediates. The electron acceptor tetracyanoanthracene (TCA) forms ground-state charge-transfer complexes with alkyl-substituted benzene donors. By a change of the excitation wavelength and/or donor concentration, either the free TCA or the CT complex can be excited. Quenching of free 1TCA* by the alkylbenzene donors that have low oxidation potentials, such as pentamethylbenzene and hexamethylbenzene, in acetonitrile solution leads to the direct formation of geminate SSRIP. Excitation of the corresponding charge-transfer complexes leads to the formation of geminate CRIP. Rates of return electron transfer within the two types of ion pair are determined from quantum yields for formation of free radical ions together with the CRIP fluorescence decay lifetimes. The rates of return electron transfer within both sets of radical ion pairs depend upon the reaction exothermicity in a manner consistent with the Marcus inverted region. The data are analyzed by using a golden rule model in which the rate is given as a function of an electronic coupling matrix element, reorganization energies for the rearranged high-frequency (skeletal vibration) and low-frequency (mainly solvent and libration) motions, and an averaged frequency for the skeletal modes. Estimates for the reorganization energies and the skeletal frequency for the CRIP are obtained independently by analysis of the spectral distribution of the CRIP (exciplex) emission spectrum. A good fit to the return electron-transfer rate data for the CRIP is obtained by using the values for these parameters obtained from the emission spectrum. It is found that the electronic coupling in the CRIP is ca. 2 orders of magnitude higher than in the SSRIP and that the intermolecular (mainly solvent) reorganization energy for the contact pair is ca. 1 eV lower than that of the solvent-separated pair. The relevance of these observations to the photophysical and photochemical properties of contact radical ion pairs is discussed.
查看更多