摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

trans-stilbene, helium complex | 154277-90-4

中文名称
——
中文别名
——
英文名称
trans-stilbene, helium complex
英文别名
——
trans-stilbene, helium complex化学式
CAS
154277-90-4
化学式
C14H12*He
mdl
——
分子量
184.252
InChiKey
FUCIQIIIBMNIKU-CALJPSDSSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    State mixing and vibrational predissociation in large molecule van der Waals complexes: trans‐stilbene–X complexes where X=He, H2, Ne, and Ar
    摘要:
    We report a detailed study of vibrational predissociation and intramolecular–intermolecular state mixing in the first excited singlet state of trans-stilbene van der Waals complexes with helium, hydrogen, neon, and argon. We present evidence that the helium atom in stilbene–He and the H2 molecule in stilbene–H2 possess very low frequency van der Waals bending levels involving delocalization of the complexed species over both phenyl rings. In stilbene–He, the mode-selective, strong coupling of the out-of-plane phenyl ring modes with the pseudotranslation van der Waals modes leads to a dramatic, inhomogeneous broadening of the transitions to several times their breadth in in-plane vibrations. The observed dispersed fluorescence spectra give product state distributions and internal clock lifetime estimates which can only be made consistent with direct lifetime measurements by assuming extensive state mixing of the intramolecular levels with the van der Waals levels in which the states accessed by the laser are actually only about 30% intramolecular in character. We conclude that in these complexes the processes of intramolecular–intermolecular state mixing (static IVR) and vibrational predissociation are not independent processes but are closely tied to one another. In fact, the vibrational product state distributions observed for the out-of-plane phenyl ring levels can best be interpreted as reflecting the percentage van der Waals character in the initially prepared state. In stilbene–H2 the mode selective coupling exhibits itself as a splitting of the out-of-plane transitions into a set of 5–6 closely spaced transitions separated by only about 1 cm−1. The sequence of transitions is suggestive of an in-plane potential for H2 motion which is nearly flat across the entire length of the stilbene molecule with a small barrier presented by the ethylenic carbons through which the H2 molecule can tunnel. Dispersed fluorescence spectra from these levels point to a two-tiered coupling scheme with the bound van der Waals levels. In contrast, the out-of-plane phenyl transitions in stilbene–Ne and stilbene–Ar possess unusual shifts, but the transitions are narrow once again. In these cases the complexed atom appears to be largely localized over a single phenyl ring.
    DOI:
    10.1063/1.455806
  • 作为产物:
    描述:
    氦气反式-1,2-二苯乙烯 以 gas 为溶剂, 生成 trans-stilbene, helium complex
    参考文献:
    名称:
    State mixing and vibrational predissociation in large molecule van der Waals complexes: trans‐stilbene–X complexes where X=He, H2, Ne, and Ar
    摘要:
    We report a detailed study of vibrational predissociation and intramolecular–intermolecular state mixing in the first excited singlet state of trans-stilbene van der Waals complexes with helium, hydrogen, neon, and argon. We present evidence that the helium atom in stilbene–He and the H2 molecule in stilbene–H2 possess very low frequency van der Waals bending levels involving delocalization of the complexed species over both phenyl rings. In stilbene–He, the mode-selective, strong coupling of the out-of-plane phenyl ring modes with the pseudotranslation van der Waals modes leads to a dramatic, inhomogeneous broadening of the transitions to several times their breadth in in-plane vibrations. The observed dispersed fluorescence spectra give product state distributions and internal clock lifetime estimates which can only be made consistent with direct lifetime measurements by assuming extensive state mixing of the intramolecular levels with the van der Waals levels in which the states accessed by the laser are actually only about 30% intramolecular in character. We conclude that in these complexes the processes of intramolecular–intermolecular state mixing (static IVR) and vibrational predissociation are not independent processes but are closely tied to one another. In fact, the vibrational product state distributions observed for the out-of-plane phenyl ring levels can best be interpreted as reflecting the percentage van der Waals character in the initially prepared state. In stilbene–H2 the mode selective coupling exhibits itself as a splitting of the out-of-plane transitions into a set of 5–6 closely spaced transitions separated by only about 1 cm−1. The sequence of transitions is suggestive of an in-plane potential for H2 motion which is nearly flat across the entire length of the stilbene molecule with a small barrier presented by the ethylenic carbons through which the H2 molecule can tunnel. Dispersed fluorescence spectra from these levels point to a two-tiered coupling scheme with the bound van der Waals levels. In contrast, the out-of-plane phenyl transitions in stilbene–Ne and stilbene–Ar possess unusual shifts, but the transitions are narrow once again. In these cases the complexed atom appears to be largely localized over a single phenyl ring.
    DOI:
    10.1063/1.455806
点击查看最新优质反应信息

文献信息

  • Picosecond real‐time studies of mode‐specific vibrational predissociation
    作者:David H. Semmes、J. Spencer Baskin、Ahmed H. Zewail
    DOI:10.1063/1.457847
    日期:1990.3.15
    The vibrational predissociation of several van der Waals complexes of t-stilbene has been studied by directly measuring, in real time, the fluorescence intensity from the initial reactant state and from the individual product states formed in the dissociation process after exciting single vibrational levels of the complex. With the aid of a kinetic model involving sequential processes, the individual rates for intramolecular vibrational redistribution and vibrational predissociation in the overall dissociation process are resolved and distinguished in several cases. In the stilbene–He complex, the dissociation is significantly faster from low energy out-of-plane modes than it is from a higher energy in-plane mode.
查看更多

同类化合物

(E,Z)-他莫昔芬N-β-D-葡糖醛酸 (E/Z)-他莫昔芬-d5 (4S,5R)-4,5-二苯基-1,2,3-恶噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S,5R,5''R)-2,2''-(1-甲基亚乙基)双[4,5-二氢-4,5-二苯基恶唑] (4R,5S)-4,5-二苯基-1,2,3-恶噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4R,4''R,5S,5''S)-2,2''-(1-甲基亚乙基)双[4,5-二氢-4,5-二苯基恶唑] (1R,2R)-2-(二苯基膦基)-1,2-二苯基乙胺 鼓槌石斛素 黄子囊素 高黄绿酸 顺式白藜芦醇三甲醚 顺式白藜芦醇 顺式己烯雌酚 顺式-白藜芦醇3-O-beta-D-葡糖苷酸 顺式-桑皮苷A 顺式-曲札芪苷 顺式-二苯乙烯 顺式-beta-羟基他莫昔芬 顺式-a-羟基他莫昔芬 顺式-3,4',5-三甲氧基-3'-羟基二苯乙烯 顺式-1-(3-甲基-2-萘基)-2-(2-萘基)乙烯 顺式-1,2-双(三甲基硅氧基)-1,2-双(4-溴苯基)环丙烷 顺式-1,2-二苯基环丁烷 顺-均二苯乙烯硼酸二乙醇胺酯 顺-4-硝基二苯乙烯 顺-1-异丙基-2,3-二苯基氮丙啶 非洲李(PRUNUSAFRICANA)树皮提取物 阿非昔芬 阿里可拉唑 阿那曲唑二聚体 阿托伐他汀环氧四氢呋喃 阿托伐他汀环氧乙烷杂质 阿托伐他汀环(氟苯基)钠盐杂质 阿托伐他汀环(氟苯基)烯丙基酯 阿托伐他汀杂质D 阿托伐他汀杂质94 阿托伐他汀杂质7 阿托伐他汀杂质5 阿托伐他汀内酰胺钠盐杂质 阿托伐他汀中间体M4 阿奈库碘铵 锌(II)(苯甲醛)(四苯基卟啉) 银松素 铜酸盐(5-),[m-[2-[2-[1-[4-[2-[4-[[4-[[4-[2-[4-[4-[2-[2-(羧基-kO)苯基]二氮烯基-kN1]-4,5-二氢-3-甲基-5-(羰基-kO)-1H-吡唑-1-基]-2-硫代苯基]乙烯基]-3-硫代苯基]氨基]-6-(苯基氨基)-1,3,5-三嗪-2-基]氨基]-2-硫代苯基]乙烯基]-3-硫代 铒(III) 离子载体 I 铀,二(二苯基甲酮)四碘- 钾钠2,2'-[(E)-1,2-乙烯二基]二[5-({4-苯胺基-6-[(2-羟基乙基)氨基]-1,3,5-三嗪-2-基}氨基)苯磺酸酯](1:1:1) 钠{4-[氧代(苯基)乙酰基]苯基}甲烷磺酸酯 钠;[2-甲氧基-5-[2-(3,4,5-三甲氧基苯基)乙基]苯基]硫酸盐 钠4-氨基二苯乙烯-2-磺酸酯