Solvent/Oxidant-Switchable Synthesis of Multisubstituted Quinazolines and Benzimidazoles via Metal-Free Selective Oxidative Annulation of Arylamidines
摘要:
A fast and simple divergent synthesis of multisubstituted quinazolines and benzimidazoles was developed from readily available amidines, via iodine(III)-promoted oxidative C(sp(3))-C(sp(2)) and C(sp(2))-N bond formation in nonpolar and polar solvents, respectively. Further selective synthesis of quinazolines in polar solvent was realized by TEMPO-catalyzed sp(3)C-H/sp(2)C-H direct coupling of the amidine with K2S2O8 as the oxidant. No metal, base, or other additives were needed.
Solvent/Oxidant-Switchable Synthesis of Multisubstituted Quinazolines and Benzimidazoles via Metal-Free Selective Oxidative Annulation of Arylamidines
摘要:
A fast and simple divergent synthesis of multisubstituted quinazolines and benzimidazoles was developed from readily available amidines, via iodine(III)-promoted oxidative C(sp(3))-C(sp(2)) and C(sp(2))-N bond formation in nonpolar and polar solvents, respectively. Further selective synthesis of quinazolines in polar solvent was realized by TEMPO-catalyzed sp(3)C-H/sp(2)C-H direct coupling of the amidine with K2S2O8 as the oxidant. No metal, base, or other additives were needed.
Transition Metal-Free Visible Light-Driven Photoredox Oxidative Annulation of Arylamidines
作者:Zi-chao Shen、Pan Yang、Yu Tang
DOI:10.1021/acs.joc.5b02366
日期:2016.1.4
A fast catalytic synthesis of multisubstituted quinazolines from readily available amidines via visible light-mediated oxidative C(sp(3))-C(sp(2)) bond formation has been established. This reaction is a metal-free oxidative coupling catalyzed by a photoredox organocatalyst. The protocol features low catalyst loading (1 mol %).