manuscript the reactivity of the two oxidation-labile superbases 1,4,5,8-tetrakis(N,N,N′,N′-tetramethylguanidino)naphthalene and the newly synthesized 1,4,5,8-tetrakis(N,N′-dimethyl-N,N′-ethylene-guanidino)naphthalene(tdmegn) are discussed and compared with that of related organic electron donors. The work includes oxidation with inorganic and organic oxidation reagents, as well as the preparation and characterization
在这份手稿中,两种氧化不稳定的超碱 1,4,5,8-四(N,N,N',N'-四甲基胍基)萘和新合成的 1,4,5,8-四(N ,N'-二甲基-N,N'-乙烯-胍基)萘(tdmegn)与相关的有机电子给体进行了讨论和比较。工作包括用无机和有机氧化试剂进行氧化,以及双核 CoII、NiIII 和 CuI 配合物的制备和表征。在 SQUID 测量的基础上研究了双核 CoII 和 NiIII 复合物中的磁耦合。最后,给出了双核 CuI 配合物氧化的实验结果。
Syntheses of the First Coordination Compounds of the New Strong Molecular Electron Donor and Double Proton Sponge 1,4,5,8‐Tetrakis(tetramethylguanidino)naphthalene
the synthesis and properties of a new electron donor featuring an aromatic system to which four guanidino groups are attached, namely, 1,4,5,8-tetrakis(tetramethylguanidino)naphthalene (ttmgn). The molecule is a double proton sponge with an asymmetric N―H···N bridge being formed in the protonated form. Oxidation is followed electrochemically, and twooxidation waves at E 1/2 (CH 3 CN) = ―0.25 and +0
在此,我们报告了一种新的电子供体的合成和性质,该电子供体具有一个芳香系统,四个胍基连接到该系统上,即 1,4,5,8-四(四甲基胍)萘 (ttmgn)。该分子为双质子海绵,质子化时形成不对称的N—H···N桥。以电化学方式跟踪氧化,并观察到 E 1/2 (CH 3 CN) = ―0.25 和 +0.50 V vs. SCE 处的两个氧化波。I 2 化学氧化产生ttmgn(I 3 ) 2 ,其中I 3 - 单元通过I…C 接触与ttmgn 2+ 阳离子相互作用。与过量的 Br 2 反应导致从芳族体系中去除四个电子并形成具有椅子型构象的 C 10 核的盐 (ttmgn)-Br 4。双核烷基铝配合物[(ttmgn)(AlMe 2 ) 2 ][BPh 4 ] 2 可以通过双质子化的ttmgn分子与AlMe 3 之间的反应制备,并作为了解动态效应的基准系统。研究了双核 Co II 复合物 [(ttmgn)(CoCl
Counter-ligand control of the electronic structure in dinuclear copper-tetrakisguanidine complexes
Decision-making counter-ligands: a bridging redox-active ligand in a dinuclear copper complex could be either neutral (complex type [CuII-GFA-CuII]) or dicationic (complex type [CuI-GFA-CuI]), depending on the nature of the counter-ligands X.
Boron(III) cations are widely used as highly Lewis acidic reagents in synthetic chemistry. In contrast, boron(II) cations are extremely rare and their chemistry almost completely unknown. They are both Lewis acids and electron donors, properties that are commonly associated with catalytically active late‐transition‐metal complexes. This double reactivity pattern ensures a rich and diverse chemistry