摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

7-azido-O-tritylheptahydroxamate | 1208863-19-7

中文名称
——
中文别名
——
英文名称
7-azido-O-tritylheptahydroxamate
英文别名
7-azido-N-(trityloxy)heptanamide;O-trityl 7-azidoheptylhydroxamate;7-azido-N-trityloxyheptanamide
7-azido-O-tritylheptahydroxamate化学式
CAS
1208863-19-7
化学式
C26H28N4O2
mdl
——
分子量
428.534
InChiKey
IVIBOTAAUSQETQ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.29
  • 重原子数:
    32.0
  • 可旋转键数:
    12.0
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.27
  • 拓扑面积:
    87.09
  • 氢给体数:
    1.0
  • 氢受体数:
    3.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    7-azido-O-tritylheptahydroxamate三苯基膦 作用下, 以 四氢呋喃 为溶剂, 反应 2.0h, 以89%的产率得到7-amino-N-(trityloxy)heptanamide
    参考文献:
    名称:
    Design and structure activity relationship of tumor-homing histone deacetylase inhibitors conjugated to folic and pteroic acids
    摘要:
    Histone deacetylase (HDAC) inhibition has recently emerged as a novel therapeutic approach for the treatment of various pathological conditions including cancer. Currently, two HDAC inhibitors (HDACi) - Vorinostat and Romidepsin - have been approved for the treatment of cutaneous T-cell lymphoma. However, HDACi remain ineffective against solid tumors and are associated with adverse events including cardiotoxicity. Targeted delivery may enhance the therapeutic indices of HDACi and enable them to be efficacious against solid tumors. We showed herein that morphing of folic and pteroic acids into the surface recognition group of HDACi results in hydroxamate and benzamide HDACi which derived tumor homing by targeting folate receptor (FR), a receptor commonly overexpressed in solid tumors. We observed a correlation between the potency of HDAC1 inhibition and cytotoxicity as only the potent pteroate hydroxamates, 11d and 11e, displayed antiproliferative activity against two representative FR-expression cancer cells. Our observation further supports the previous results which suggest that for a drug to be successfully targeted using the FR, it must be extremely potent against its primary target as the FR has a low delivery efficiency. Published by Elsevier Masson SAS.
    DOI:
    10.1016/j.ejmech.2015.04.014
  • 作为产物:
    描述:
    O-三苯甲基羟胺7-叠氮庚酸N-甲基吗啉氯甲酸异丁酯 作用下, 以 四氢呋喃 为溶剂, 以77%的产率得到7-azido-O-tritylheptahydroxamate
    参考文献:
    名称:
    Antimalarial and antileishmanial activities of histone deacetylase inhibitors with triazole-linked cap group
    摘要:
    Histone deacetylase inhibitors (HDACi) are endowed with plethora of biological functions including anti-proliferative, anti-inflammatory, anti-parasitic, and cognition-enhancing activities. Parsing the structure activity relationship (SAR) for each disease condition is vital for long-term therapeutic applications of HDACi. We report in the present study specific cap group substitution patterns and spacer-group chain lengths that enhance the antimalarial and antileishmanial activity of aryltriazolylhydroxamates-based HDACi. We identified many compounds that are several folds selectively cytotoxic to the plasmodium parasites compared to standard HDACi. Also, a few of these compounds have antileishmanial activity that rivals that of miltefosine, the only currently available oral agent against visceral leishmaniasis. The anti-parasite properties of several of these compounds tracked well with their anti-HDAC activities. The results presented here provide further evidence on the suitability of HDAC inhibition as a viable therapeutic option to curb infections caused by apicomplexan protozoans and trypanosomatids. (C) 2009 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2009.10.042
点击查看最新优质反应信息

文献信息

  • Design, synthesis and evaluation of antiproliferative activity of melanoma-targeted histone deacetylase inhibitors
    作者:Idris Raji、Kabir Ahluwalia、Adegboyega K. Oyelere
    DOI:10.1016/j.bmcl.2017.01.044
    日期:2017.2
    The clinical validation of histone deacetylase inhibition as a cancer therapeutic modality has stimulated interest in the development of new generation of potent and tumor selective histone deacetylase inhibitors (HDACi). With the goal of selective delivery of the HDACi to melanoma cells, we incorporated the benzamide, a high affinity melanin-binding template, into the design of HDACi to generate a new
    组蛋白脱乙酰基酶抑制作为一种癌症治疗方法的临床验证激发了人们对新一代有效和肿瘤选择性组蛋白脱乙酰基酶抑制剂(HDACi)的开发兴趣。为了选择性地将HDACi递送至黑素瘤细胞,我们将苯甲酰胺(一种高亲和力的黑色素结合模板)整合到HDACi的设计中,以生成一系列新的化合物10a-b和11a-b,它们对HDAC1和HDAC6。但是,相对于未靶向的HDACi,这些化合物的抗增殖活性减弱。化合物14提供了另一种策略,一种带有苯甲酰胺模板的前药,该模板通过不稳定键与基于异羟酸酯的HDACi连接。这种前药化合物显示出有希望的抗增殖活性,值得进一步研究。
  • Dual Targeting of Histone Deacetylase and Topoisomerase II with Novel Bifunctional Inhibitors
    作者:William Guerrant、Vishal Patil、Joshua C. Canzoneri、Adegboyega K. Oyelere
    DOI:10.1021/jm200799p
    日期:2012.2.23
    Strategies to ameliorate the flaws of current chemotherapeutic agents, while maintaining potent anticancer activity, are of particular interest. Agents which can modulate multiple targets may have superior utility and fewer side effects than current single-target drugs. To explore the prospect in cancer therapy of a bivalent agent that combines two complementary chemo-active groups within a single molecular architecture, we have synthesized dual-acting histone deacetylase and topoisomerase II inhibitors. These dual-acting agents are derived from suberoylanilide hydroxamic acid (SAHA) and anthracycline daunorubicin, prototypical histone deacetylase (HDAC) and topoisomerase II (Topo II) inhibitors, respectively. We report herein that these agents present the signatures of inhibition of HDAC and Topo II in both cell-free and whole-cell assays. Moreover, these agents potently inhibit the proliferation of representative cancer cell lines.
  • Histone Deacetylase Inhibitors Equipped with Estrogen Receptor Modulation Activity
    作者:Berkley E. Gryder、Michael K. Rood、Kenyetta A. Johnson、Vishal Patil、Eric D. Raftery、Li-Pan D. Yao、Marcie Rice、Bahareh Azizi、Donald F. Doyle、Adegboyega K. Oyelere
    DOI:10.1021/jm400467w
    日期:2013.7.25
    We describe a set of novel histone deacetylase inhibitors (HDACi) equipped with either an antagonist or an agonist of the estrogen receptor (ER) to confer selective activity against breast cancers. These bifunctional compounds potently inhibit HDAC at nanomolar concentrations and either agonize or antagonize ER alpha and ER beta. The ER antagonist activities of tamoxifen-HDACi conjugates (Tam-HDACi) are nearly identical to those of tamoxifen. Conversely, ethynyl-estradiol-HDACi conjugates (EED-HDACi) have attenuated ER agonist activities relative to the parent ethynyl-estradiol. In silico docking analysis provides structural basis for the trends of ER agonism/antagonism and ER subtype selectivity. Excitingly, lead Tam-HDACi conjugates show anticancer activity that is selectively more potent against MCF-7 (ER alpha positive breast cancer) compared to MDA-MB-231 (triple negative breast cancer), DU145 (prostate cancer), or Vero (noncancerous cell line). This dual-targeting approach illustrates the utility of designing small molecules with an emphasis on cell-type selectivity, not merely improved potency, working toward a higher therapeutic index at the earliest stages of drug development.
  • Dual-acting histone deacetylase-topoisomerase I inhibitors
    作者:William Guerrant、Vishal Patil、Joshua C. Canzoneri、Li-Pan Yao、Rebecca Hood、Adegboyega K. Oyelere
    DOI:10.1016/j.bmcl.2013.03.108
    日期:2013.6
    Current chemotherapy regimens are comprised mostly of single-target drugs which are often plagued by toxic side effects and resistance development. A pharmacological strategy for circumventing these drawbacks could involve designing multivalent ligands that can modulate multiple targets while avoiding the toxicity of a single-targeted agent. Two attractive targets, histone deacetylase (HDAC) and topoisomerase I (Topo I), are cellular modulators that can broadly arrest cancer proliferation through a range of downstream effects. Both are clinically validated targets with multiple inhibitors in therapeutic use. We describe herein the design and synthesis of dual-acting histone deacetylase-topoisomerase I inhibitors. We also show that these dual-acting agents retain activity against HDAC and Topo I, and potently arrest cancer proliferation. Published by Elsevier Ltd.
  • Pyrimethamine conjugated histone deacetylase inhibitors: Design, synthesis and evidence for triple negative breast cancer selective cytotoxicity
    作者:Bocheng Wu、Shaghayegh Fathi、Shanee Mortley、Mahir Mohiuddin、Young C. Jang、Adegboyega K. Oyelere
    DOI:10.1016/j.bmc.2020.115345
    日期:2020.3
    Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor which has been recognized as a promising cancer therapeutic target. Small molecule pyrimethamine (PYM) is a known direct inhibitor of activated STAT3 and it is currently under clinical trial. Also, histone deacetylase (HDAC) inhibition has been shown to indirectly attenuate STAT3 signaling through inhibition of STAT3 activation. Herein we described the design and biological profiling of two classes of PYM-conjugated HDAC inhibitors (HDACi). We observed that the class I PYM-HDACi compounds 12a-c potently inhibited HDACs 1 and 6 in cell free assays while a lead class II PYM-HDACi compound 23 showed a strong HDAC 6 selective inhibition. In a cell-based assay, 12a-c are preferentially cytotoxic to MDA-MB-231, a TNBC cell line that is highly STAT3-dependent, while 23 showed no such selective toxicity. Subsequent target validation studies revealed that a representative class I PYM-HDACi compound 12c elicited a signature of HDAC and STAT3 pathway inhibition intracellularly. Collectively, these data suggest that PYM-HDACi compounds are promising leads to develop targeted therapy for TNBC.
查看更多

同类化合物

(3-三苯基甲氨基甲基)吡啶 非马沙坦杂质1 隐色甲紫-d6 隐色孔雀绿-d6 隐色孔雀绿 隐色乙基结晶紫 降钙素杂质10 重氮四苯基乙烷 酸性黄117 酸性蓝119 酚酞啉 酚酞二硫酸钾水合物 萘,1-甲氧基-3-甲基 苯酚,4-(1,1-二苯基丙基)- 苯甲醇,4-溴-a-(4-溴苯基)-a-苯基- 苯甲醇,2-氨基-5-氯-a-乙烯基-a-苯基- 苯甲酸,4-(羟基二苯甲基)-,甲基酯 苯甲酸,3-[[2-[[(1,1-二甲基乙氧基)羰基]氨基]-3-[(三苯代甲基)硫代]丙基]氨基]-,(R)- 苯甲基N-[(2(三苯代甲基四唑-5-基-1,1联苯基-4-基]-甲基-2-氨基-3-甲基丁酸酯 苯基双-(对二乙氨基苯)甲烷 苯基二甲苯基甲烷 苯基二[2-甲基-4-(二乙基氨基)苯基]甲烷 苯基{二[4-(三氟甲基)苯基]}甲醇 苯基-二(2-羟基-5-氯苯基)甲烷 苄基2,3,4-三-O-苄基-6-O-三苯甲基-BETA-D-吡喃葡萄糖苷 苄基 5-氨基-5-脱氧-2,3-O-异亚丙基-6-O-三苯甲基呋喃己糖苷 苄基 2-乙酰氨基-2-脱氧-6-O-三苯基-甲基-alpha-D-吡喃葡萄糖苷 苄基 2,3-O-异亚丙基-6-三苯甲基-alpha-D-甘露呋喃糖 苄基 2,3,4-三-O-(苯基甲基)-6-O-(三苯基甲基)-ALPHA-D-吡喃甘露糖苷 芴甲氧羰基-4-叔丁酯-天冬酰胺-S-三氯苯甲基-L-半胱氨酸 膦酸,1,2-乙二基二(磷羧基甲基)亚氨基-3,1-丙二基次氮基<三价氮基>二(亚甲基)四-,盐钠 脱氢奥美沙坦-2三苯甲基奥美沙坦脂 美托咪定杂质28 绿茶提取物茶多酚陕西龙孚 结晶紫 磺基琥珀酰亚胺基-4-[2-(4,4-二甲氧基三苯甲基)]丁酸酯 磷,三(4-甲氧苯基)甲基-,碘化 碱性蓝 硫代硫酸氢 S-[2-[(3,3,3-三苯基丙基)氨基]乙基]酯 盐酸三苯甲基肼 白孔雀石绿-d5 甲酮,(反-4-氨基-4-甲基环己基)-4-吗啉基- 甲基三苯基甲基醚 甲基6-O-(三苯基甲基)-ALPHA-D-吡喃甘露糖苷三苯甲酸酯 甲基3,4-O-异亚丙基-6-O-三苯甲基-beta-D-吡喃半乳糖苷 甲基3,4-O-异亚丙基-2-O-甲基-6-O-三苯甲基吡喃己糖苷 甲基2-甲基-N-{[4-(三氟甲基)苯基]氨基甲酰}丙氨酸酸酯 甲基2,3,4-三-O-苯甲酰基-6-O-三苯甲基-ALPHA-D-吡喃葡萄糖苷 甲基2,3,4-三-O-苄基-6-O-三苯甲基-ALPHA-D-吡喃葡萄糖苷 甲基2,3,4-三-O-(苯基甲基)-6-O-(三苯基甲基)-ALPHA-D-吡喃半乳糖苷