Stereoselective LSD-like activity in d-lysergic acid amides of R- and S-2-aminobutane
摘要:
The (R)- and (S)-2-butylamides of d-lysergic acid were prepared and evaluated in behavioral and biochemical assays of 5-HT2 agonist activity. In rats trained to discriminate 0.08 mg/kg LSD tartrate from saline, both isomers completely substituted for the training stimulus. Similarly, both isomers were found to possess very high affinity in displacing [I-125]-(R)-DOI ([I-125]-(R)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) from rat cortical homogenate 5-HT2 receptors and in displacing [H-3]-8-OH-DPAT ([H-3]-8-hydroxy-2-(di-n-propylamino)tetralin) from rat hippocampal 5-HT1A receptors. The difference in activity between the two isomeric amides was significant in both the behavioral and binding assays, with the R isomer possessing greater potency. Molecular mechanics were used to predict the active geometries of the subject compounds. It was found that the (R)-2-butylamide has a conformation quite similar to LSD, while the (S)-2-butylamide does not. These results suggest that stereochemical properties of the amide substituent of hallucinogenic lysergamide may exert a critical influence on activity. It is concluded that the conformation of the amide function may directly affect binding through stereoselective interactions with a hydrophobic region on the receptor, indirectly by inducing conformational changes elsewhere in the molecule, or by a combination of these two mechanisms.
Stereoselective LSD-like activity in d-lysergic acid amides of R- and S-2-aminobutane
作者:Robert Oberlender、Robert C. Pfaff、Michael P. Johnson、Xuemei Huang、David E. Nichols
DOI:10.1021/jm00080a001
日期:1992.1
The (R)- and (S)-2-butylamides of d-lysergic acid were prepared and evaluated in behavioral and biochemical assays of 5-HT2 agonist activity. In rats trained to discriminate 0.08 mg/kg LSD tartrate from saline, both isomers completely substituted for the training stimulus. Similarly, both isomers were found to possess very high affinity in displacing [I-125]-(R)-DOI ([I-125]-(R)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) from rat cortical homogenate 5-HT2 receptors and in displacing [H-3]-8-OH-DPAT ([H-3]-8-hydroxy-2-(di-n-propylamino)tetralin) from rat hippocampal 5-HT1A receptors. The difference in activity between the two isomeric amides was significant in both the behavioral and binding assays, with the R isomer possessing greater potency. Molecular mechanics were used to predict the active geometries of the subject compounds. It was found that the (R)-2-butylamide has a conformation quite similar to LSD, while the (S)-2-butylamide does not. These results suggest that stereochemical properties of the amide substituent of hallucinogenic lysergamide may exert a critical influence on activity. It is concluded that the conformation of the amide function may directly affect binding through stereoselective interactions with a hydrophobic region on the receptor, indirectly by inducing conformational changes elsewhere in the molecule, or by a combination of these two mechanisms.