According to the results of powder X-ray diffraction study of the complex salts of composition [M(NH3)(5)Cl][M'Cl-4] (M = Ir, Rh, or Co and M' = Pt or Pd), the anhydrous salts crystallize in the orthorhombic system (space group Pnma) and are isostructural to the [Ir(NH3)(5)Cl][PtCl4] complex studied previously. The unit cell parameters of the resulting salts were refined. The metal powders, which were obtained by thermal decomposition of these salts under an atmosphere of hydrogen, were studied by powder X-ray analysis.
Pt[sub x]Co[sub y] Catalysts Degradation in PEFC Environments: Mechanistic Insights
作者:Pascal Fugier、Sylvain Passot、Christelle Anglade、Laure Guétaz、Nicolas Guillet、Eric De Vito、Sophie Mailley、Alejandro A. Franco
DOI:10.1149/1.3385000
日期:——
In this paper, we present experimental results on the preparation and the electrochemical characterization of PtxCoy electrocatalytic particles with homogeneous composition, modeled by Franco et al. [J. Electrochem. Soc., 156, B410 (2009)]. Preparation is made through the direct liquid injection metallorganic chemical vapor deposition technique previously developed at CEA, and electrochemical analysis
在本文中,我们展示了由 Franco 等人建模的具有均匀组成的 Pt x Co y 电催化颗粒的制备和电化学表征的实验结果。[J. 电化学。Soc., 156, B410 (2009)]。制备采用CEA先前开发的直接液体注入金属有机化学气相沉积技术,并使用旋转盘电极和膜组装气体扩散电极进行电化学分析。使用透射电子显微镜、X 射线衍射和 X 射线光电子能谱表征降解结构变化。最佳的 Co 成分被确定为具有更好的氧还原反应活性和耐久性,从而验证了建模研究。
Suppression of growth-induced perpendicular magnetic anisotropy in Co–Pt alloys by trace amounts of Si
作者:A. L. Shapiro、O. Vajk、F. Hellman、K. M. Ring、K. L. Kavanagh
DOI:10.1063/1.125574
日期:1999.12.27
(CoxPt1−x)1−ySiy alloys with Si content from 1 to 20 at. % have been grown over a range of growth conditions. Co-deposition of even traceamounts of Si with Co–Ptalloys causes the growth-inducedmagneticanisotropy and chemical clustering found in these vapor-deposited alloy films to decrease or vanish. It also causes significant reduction in grain size. Addition of 5 at. % Si eliminates anisotropy completely
(CoxPt1-x)1-ySiy 合金,Si 含量为 1 至 20 at。% 已经在一系列生长条件下生长。即使是痕量的 Si 与 Co-Pt 合金的共沉积,也会导致这些气相沉积合金薄膜中的生长诱导磁各向异性和化学团簇减少或消失。它还导致晶粒尺寸的显着减小。添加 5 at。% Si 完全消除了各向异性。添加 1 at。% Si 产生的薄膜具有与在较低沉积温度下生长的纯 Co-Pt 合金相同的磁性。我们认为这种各向异性和相关效应的抑制是由于在甚至痕量 Si 存在的情况下生长过程中表面迁移率的降低。
Depth-dependent chemical and magnetic local orders in thin magnetic films
作者:Narcizo M. Souza-Neto、Aline Y. Ramos、Hélio C. N. Tolentino、Alessandro Martins、Antonio D. Santos
DOI:10.1063/1.2335782
日期:2006.9.11
spectroscopy with resolved grazing incidence to clarify the thickness-dependent magnetic properties in nanometric CoPt films. They show that in the thinnest samples the chemical order that induces the perpendicular magnetic anisotropy has no depth dependence. However, in the thicker samples the chemical order is depth dependent along the film thickness, with a disordered layer close to the substrate. The ability
作者报告了使用具有分辨掠入射的 X 射线吸收光谱来阐明纳米 CoPt 薄膜中与厚度相关的磁性。他们表明,在最薄的样品中,引起垂直磁各向异性的化学顺序与深度无关。然而,在较厚的样品中,化学顺序随薄膜厚度的深度而变化,靠近基板的无序层。实验方法解决局部结构参数的深度依赖性的能力使其成为一种独特的工具,适用于这种依赖性是一个重要问题的纳米结构。
Magnetic Anchored CoPt Bimetallic Nanoparticles as Selective Hydrogenation Catalyst for Cinnamaldehyde
Selectivehydrogenation reaction of cinnamaldehyde is crucial for its appliction in fine chemical industries. The traditional noble metal catalyst for this reaction is expensive and often involving tedious steps. In this work, the magnetic anchored CoPt/Fe3O4 catalyst is prepared by a simple wet-impregnation method and evaluted as catalyst for selectivehydrogenation of cinnamaldehyde. Electrons transfer
肉桂醛的选择性加氢反应对其在精细化工行业的应用至关重要。用于该反应的传统贵金属催化剂价格昂贵且通常涉及繁琐的步骤。在这项工作中,磁性锚定的 CoPt/Fe3O4 催化剂通过简单的湿浸法制备,并被评估为肉桂醛选择性加氢的催化剂。电子直接从 Co 转移到 Pt NPs 可以增强 Co NPs 界面中的 H2 解离能力,从而增强整体催化性能。在最佳条件下,肉桂醛的转化率为95%,肉桂醇的选择性为84%。此外,经过反复测试,外部 Co NPs 与 Fe3O4 载体之间的磁性相互作用保持了肉桂醇选择性的稳定性。
Novel synthetic approach to creating PtCo alloy nanoparticles by reduction of metal coordination nano-polymers
PtCo alloy nanoparticles with different metal elemental ratios (Pt/Co = 0.9, 1.6, 2.9, and 3.6) were prepared by a novel synthetic approach, using the transformation reaction of platinumIV/cobalt tetracyanoplatinate metal coordination nano-polymers (PtII-CN-PtIV/Co)
via a H2 gas-phase reduction.