摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

铬(III) | 16065-83-1

中文名称
铬(III)
中文别名
——
英文名称
Chromic Cation
英文别名
chromium(3+)
铬(III)化学式
CAS
16065-83-1
化学式
Cr+3
mdl
——
分子量
51.996
InChiKey
BFGKITSFLPAWGI-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    1470 °C
  • 物理描述:
    Solid

计算性质

  • 辛醇/水分配系数(LogP):
    -0.0
  • 重原子数:
    1
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

毒理性
  • 致癌物分类
国际癌症研究机构致癌物:铬(III)化合物
IARC Carcinogenic Agent:Chromium (III) compounds
来源:International Agency for Research on Cancer (IARC)
毒理性
  • 致癌物分类
国际癌症研究机构(IARC)致癌物分类:第3组:无法归类其对人类致癌性
IARC Carcinogenic Classes:Group 3: Not classifiable as to its carcinogenicity to humans
来源:International Agency for Research on Cancer (IARC)
毒理性
  • 致癌物分类
国际癌症研究机构专著:第49卷:(1990年)和焊接
IARC Monographs:Volume 49: (1990) Chromium, Nickel and Welding
来源:International Agency for Research on Cancer (IARC)

安全信息

  • 职业暴露等级:
    C
  • 职业暴露限值:
    TWA: 0.5 mg/m3

制备方法与用途

类别:有毒物品

可燃性危险特性:

  • 不可燃烧;
  • 火场会产生含有的有毒烟雾。

储运特性:

  • 库房应保持低温、通风且干燥。

灭火剂:

职业标准:

  • 时间加权平均容许浓度(TWA)为0.5毫克/立方米(以计)。

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Permeability contrast correction employing propionate-sequestered
    摘要:
    一种制备清晰的绿色铬(III)丙酸盐溶液的方法,包括将丙酸与水混合,加入铬(VI)源,例如重铬酸盐,然后加入亚硝酸盐,例如亚硝酸钠,以还原铬(VI)为铬(III),在过量酸的存在下进行,最好是丙酸,可选择性地与其他酸,例如盐酸,结合使用,以产生稳定的溶液,用于与聚合物,例如部分水解的丙烯酰胺基聚合物一起,在渗透率对比校正程序中使用,用于油田处理中高渗透率条纹的处理。
    公开号:
    US04636572A1
  • 作为产物:
    描述:
    参考文献:
    名称:
    Interactions of chromium with microorganisms and plants
    摘要:
    铬是一种对微生物和植物具有高度毒性的非必需金属。由于铬(Cr)在工业上的广泛应用,它已成为各种环境中的严重污染物。六价铬(Cr(VI))被认为比相对无害且流动性较差的三价铬(Cr(III))更具毒性。环境中铬的存在选择出了能够耐受高浓度铬化合物的微生物和植物变种。微生物(可能还有植物)表现出多种抗铬机制,包括生物吸附、减少积累、沉淀、将六价铬还原为三价铬以及铬酸盐外排。其中一些系统已被提议作为生物修复铬污染的潜在生物技术工具。在这篇综述中,我们总结了细菌、藻类、真菌和植物与铬及其化合物的相互作用。
    DOI:
    10.1111/j.1574-6976.2001.tb00581.x
点击查看最新优质反应信息

文献信息

  • Chromate-Reducing Properties of Soluble Flavoproteins from <i>Pseudomonas putida</i> and <i>Escherichia coli</i>
    作者:D. F. Ackerley、C. F. Gonzalez、C. H. Park、R. Blake、M. Keyhan、A. Matin
    DOI:10.1128/aem.70.2.873-882.2004
    日期:2004.2
    ABSTRACT

    Cr(VI) (chromate) is a toxic, soluble environmental contaminant. Bacteria can reduce chromate to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of interest. Genetic and protein engineering of suitable enzymes can improve bacterial bioremediation. Many bacterial enzymes catalyze one-electron reduction of chromate, generating Cr(V), which redox cycles, generating excessive reactive oxygen species (ROS). Such enzymes are not appropriate for bioremediation, as they harm the bacteria and their primary end product is not Cr(III). In this work, the chromate reductase activities of two electrophoretically pure soluble bacterial flavoproteins—ChrR (from Pseudomonas putida ) and YieF (from Escherichia coli )—were examined. Both are dimers and reduce chromate efficiently to Cr(III) ( k cat / K m = ∼2 × 10 4 M −1  · s −1 ). The ChrR dimer generated a flavin semiquinone during chromate reduction and transferred >25% of the NADH electrons to ROS. However, the semiquinone was formed transiently and ROS diminished with time. Thus, ChrR probably generates Cr(V), but only transiently. Studies with mutants showed that ChrR protects against chromate toxicity; this is possibly because it preempts chromate reduction by the cellular one-electron reducers, thereby minimizing ROS generation. ChrR is thus a suitable enzyme for further studies. During chromate reduction by YieF, no flavin semiquinone was generated and only 25% of the NADH electrons were transferred to ROS. The YieF dimer may therefore be an obligatory four-electron chromate reducer which in one step transfers three electrons to chromate and one to molecular oxygen. As a mutant lacking this enzyme could not be obtained, the role of YieF in chromate protection could not be directly explored. The results nevertheless suggest that YieF may be an even more suitable candidate for further studies than ChrR.

    摘要 六价铬酸盐)是一种有毒的可溶性环境污染物。细菌可将铬酸盐还原为不溶性且毒性较低的铬(III),因此铬酸生物修复技术备受关注。合适酶的基因和蛋白质工程可以改善细菌的生物修复能力。许多细菌酶催化铬酸盐的单电子还原,生成(V),(V)进行氧化还原循环,产生过多的活性氧(ROS)。这类酶不适合用于生物修复,因为它们会伤害细菌,而且其主要最终产物不是(III)。在这项工作中,两种电泳纯的可溶性细菌黄蛋白--铬酸还原酶(来自假单胞菌 Putida)和铬酸还原酶(来自假单胞菌 Pseudomonas Putida)--的铬酸还原酶活性得到了验证。 假单胞菌 )和 YieF(来自 大肠杆菌 )的活性进行了研究。这两种蛋白都是二聚体,能有效地将铬酸盐还原成 Cr(III) ( k cat / K m = ∼2 × 10 4 M -1 - s -1 ).ChrR 二聚体在铬酸盐还原过程中产生了黄素半醌,并将 25% 的 NADH 电子转移到 ROS 中。不过,半醌是瞬时形成的,ROS 会随着时间的推移而减少。因此,ChrR 可能会产生 Cr(V),但只是短暂的。对突变体的研究表明,ChrR 能防止铬酸盐中毒;这可能是因为它能阻止细胞中的单电子还原剂还原铬酸盐,从而最大限度地减少 ROS 的产生。因此,ChrR 是一种适合进一步研究的酶。在 YieF 还原铬酸盐的过程中,没有黄素半醌生成,只有 25% 的 NADH 电子转移到 ROS 上。因此,YieF 二聚体可能是一种强制性的四电子铬酸盐还原酶,它在一个步骤中将三个电子转移到铬酸盐,一个电子转移到分子氧。由于无法获得缺乏这种酶的突变体,因此无法直接探讨 YieF 在铬酸盐保护中的作用。不过研究结果表明,YieF 可能比 ChrR 更适合进一步研究。
  • Analysis of Novel Soluble Chromate and Uranyl Reductases and Generation of an Improved Enzyme by Directed Evolution
    作者:Y. Barak、D. F. Ackerley、C. J. Dodge、L. Banwari、C. Alex、A. J. Francis、A. Matin
    DOI:10.1128/aem.01334-06
    日期:2006.11
    ABSTRACT

    Most polluted sites contain mixed waste. This is especially true of the U.S. Department of Energy (DOE) waste sites which hold a complex mixture of heavy metals, radionuclides, and organic solvents. In such environments enzymes that can remediate multiple pollutants are advantageous. We report here evolution of an enzyme, ChrR6 (formerly referred to as Y6), which shows a markedly enhanced capacity for remediating two of the most serious and prevalent DOE contaminants, chromate and uranyl. ChrR6 is a soluble enzyme and reduces chromate and uranyl intracellularly. Thus, the reduced product is at least partially sequestered and nucleated, minimizing the chances of reoxidation. Only one amino acid change, Tyr 128 Asn , was responsible for the observed improvement. We show here that ChrR6 makes Pseudomonas putida and Escherichia coli more efficient agents for bioremediation if the cellular permeability barrier to the metals is decreased.

    摘要 大多数污染场地都含有混合废物。美国能源部(DOE)的废物处理场尤其如此,这些废物含有重属、放射性核素和有机溶剂的复杂混合物。在这种环境下,能够修复多种污染物的酶具有优势。我们在此报告了一种酶 ChrR6(以前称为 Y6)的进化情况,它对两种最严重、最普遍的 DOE 污染物(铬酸盐和酰)的修复能力明显增强。ChrR6 是一种可溶性酶,能在细胞内还原铬酸盐和酰。因此,还原产物至少部分被螯合和成核,最大限度地减少了再氧化的机会。只有一个氨基酸发生变化、 酪氨酸 128 Asn 是导致所观察到的改进的原因。我们在此表明,ChrR6 使 假单胞菌 和 大肠杆菌 更有效地进行生物修复。
  • Crystal Structure of ChrR—A Quinone Reductase with the Capacity to Reduce Chromate
    作者:Subramaniam Eswaramoorthy、Sébastien Poulain、Rainer Hienerwadel、Nicolas Bremond、Matthew D. Sylvester、Yian-Biao Zhang、Catherine Berthomieu、Daniel Van Der Lelie、A. Matin
    DOI:10.1371/journal.pone.0036017
    日期:——
    The Escherichia coli ChrR enzyme is an obligatory two-electron quinone reductase that has many applications, such as in chromate bioremediation. Its crystal structure, solved at 2.2 Å resolution, shows that it belongs to the flavodoxin superfamily in which flavin mononucleotide (FMN) is firmly anchored to the protein. ChrR crystallized as a tetramer, and size exclusion chromatography showed that this is the oligomeric form that catalyzes chromate reduction. Within the tetramer, the dimers interact by a pair of two hydrogen bond networks, each involving Tyr128 and Glu146 of one dimer and Arg125 and Tyr85 of the other; the latter extends to one of the redox FMN cofactors. Changes in each of these amino acids enhanced chromate reductase activity of the enzyme, showing that this network is centrally involved in chromate reduction.
    大肠杆菌ChrR酶是一种必需的两电子醌还原酶,具有多种应用,例如在铬酸生物修复中的应用。其晶体结构以2.2 Å的分辨率解析,显示它属于黄素超家族,其中黄素单核苷酸(FMN)牢固地锚定在蛋白质上。ChrR以四聚体的形式结晶,尺寸排阻色谱显示这是催化铬酸盐还原的寡聚体形式。在四聚体中,二聚体通过一对氢键网络相互作用,每个网络涉及一个二聚体的Tyr128和Glu146以及另一个二聚体的Arg125和Tyr85;后者延伸至氧化还原FMN辅因子之一。这些氨基酸中的每一个的变化都会增强铬酸盐还原酶的活性,表明该网络在铬酸盐还原中起着核心作用。
查看更多