Selective Hydrogenation of Carboxylic Acids to Alcohols or Alkanes Employing a Heterogeneous Catalyst
作者:Johannes Ullrich、Bernhard Breit
DOI:10.1021/acscatal.7b03484
日期:2018.2.2
were hydrogenated without loss of optical purity. The catalyst displays a reverse order of reactivity upon hydrogenation of different carboxylic functions with esters being less reactive than amides and carboxylic acids. This allows for chemoselective hydrogenation of an acid in the presence of an ester or an amide function.
Several classes of biologically occurring fatty acid amides have been reported from mammalian and plant sources. Many amides conjugated with fatty acids of mammalian origin exhibit specific activation of individual receptors. Their potential as pharmacological tools or as lead compounds towards the development of novel therapeutics is of great interest. Hence, access to such amides by a practical,
Nanosized sulfated titania was prepared by a sol gel hydrothermal process. X-ray diffraction (XRD), transmission electron, and scanning electron micrographs (TEM and SEM), FT-IR specific surface area, and BET N(2) adsorption were employed to characterize the properties of the synthesized sulfated TiO(2). The results indicate that both anatase and rutile TiO(2) are obtainable. This prepared sulfated titania showed high catalytic activity in direct amidation of fatty acids as well as benzoic acids with various amines under solvent-free conditions.