Two novel rhodamine-based polystyrene solid-phase fluorescent sensors PS-AC-I and PS-AC-II with different coordination atoms (O or S) are synthesized and shown to be able to detect Hg(II) ions. They are characterized by Fourier-transform infrared spectroscopy and by scanning electron microscopy analysis. Their fluorescent properties, including response time, pH effects, fluorescence titrations, metal ion competition and recycling, are investigated and compared. Sensor PS-AC-II displayed higher selectivity and sensitivity to Hg(II), with a lower detection limit of 0.032 µM, which was 15 times better than PS-AC-I. A detection mechanism involving the Hg(II) chelation-induced ring-opening of the rhodamine spirolactam is proposed with the aid of theoretical calculations.
Reversible poly(vinyl alcohol) electrospun nanofibrous membrane modified with spirolactam–rhodamine derivatives for visible detection and removal of metal ions.