The 2-halo-2,3-dihydro-1H-1,3,2-diazaboroles
(1a′: R = tBu, X = Br; 1b: R = 2,6-Me2C6H3; X = I) were converted into the 2-amino-2,3-dihydro-1H-1,3,2- diazaboroles
(2a: R = tBu; 2b: 2,6-Me2C6H3) by treatment with dry gaseous ammonia. Similarly reaction of 1a′ with 2,6-dimethylaniline or tBuNH2 afforded the corresponding derivates
(3; R1 = 2,6-Me2C6H3; 4; R1 = tBu). The treatment of 1a′ with the ethylene diamine adduct of lithium acetylide led to the formation of
(5). Lithiation of 2 a and subsequent silylation gave 6 (R1 = SiMe3), which was transformed to the diborolylamine
(7) upon exposure to 1a′. Borolylketimine
(8 ) and borolylcarbodiimide
(9) resulted from 1a′ and Ph2C=NSiMe3 or Me3SiN=C=NSiMe3, respectively. All the new compounds were characterized by elemental analyses as well as spectroscopic data (IR, 1H, 11B, 13C NMR, MS). Heterocycle 5 was also subjected to an X-ray diffraction analysis.