摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(N-bromoacetylamino)-3-(2'-thienylcarbonyl)naphthalene | 170301-23-2

中文名称
——
中文别名
——
英文名称
2-(N-bromoacetylamino)-3-(2'-thienylcarbonyl)naphthalene
英文别名
2-bromo-N-[3-(thiophene-2-carbonyl)naphthalen-2-yl]acetamide
2-(N-bromoacetylamino)-3-(2'-thienylcarbonyl)naphthalene化学式
CAS
170301-23-2
化学式
C17H12BrNO2S
mdl
——
分子量
374.258
InChiKey
PJTPYAHGPCUFJD-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5
  • 重原子数:
    22
  • 可旋转键数:
    4
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.06
  • 拓扑面积:
    74.4
  • 氢给体数:
    1
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-(N-bromoacetylamino)-3-(2'-thienylcarbonyl)naphthalene 作用下, 以 甲醇 为溶剂, 反应 6.0h, 以88%的产率得到5-(2'-thienyl)-1,3-dihydronaphtho<1,4>diazepine
    参考文献:
    名称:
    Syntheses of 5-thienyl and 5-furyl-substituted benzodiazepines: probes of the pharmacophore for benzodiazepine receptor agonists
    摘要:
    The synthesis of 5-thienyl- and 5-furyl-substituted benzodiazepines is described. These compounds were employed to probe the lipophilic pocket (L(3)) of the benzodiazepine receptor (BzR) and to determine the effect of occupation of L(3) on biological activity. Of the new analogs synthesized, the 5-(2-thienyl)-benzodiazepines 6a and 7a displayed high affinity for the BzR (IC50 28 and 18 nM, respectively) and exhibited both anticonvulsant (ED(50) approximate to 9 and 3 mg/kg) and muscle relaxant (ED(50) approximate to 10 and 7 mg/kg) activity. The 5-(3-thienyl)benzodiazepines 6d and 7d displayed only moderate affinity for the BzR (IC50 140 and 110 nM) and exhibited no biological activity (no anticonvulsant or muscle relaxant activity) at doses up to 40 mg/kg. The 5-(2-furyl)benzodiazepines (6b, 7b, 19b and 20b) exhibit low affinities for the BzR. These in vitro and in vivo findings are consistent with our model suggesting that pocket L(3) is very sensitive to lipophilic effects. Thus, decreasing the lipophilicity of functional groups which occupy this region decreases ligand affinity at BzR. The 2'-halogen (F or Cl) substituent of the 5-phenylbenzodiazepines increases ligand affinity in vitro because the active conformation of the phenyl N(4)=C(5)-C(1')=C(2') moiety is syn rather than anti. The syn conformation permits the 2'-halogen (F or Cl) atom to interact at the hydrogen bonding site H-2 and form a stable three-centered hydrogen bond in the proposed ligand binding cleft. The 3-thienyl and 2-furyl groups decrease the lipophilicity of the substituent which occupies L(3) but do not form a hydrogen bond at H-2, thus resulting in a diminished affinity at BzR.
    DOI:
    10.1016/0223-5234(96)88259-6
  • 作为产物:
    参考文献:
    名称:
    Syntheses of 5-thienyl and 5-furyl-substituted benzodiazepines: probes of the pharmacophore for benzodiazepine receptor agonists
    摘要:
    The synthesis of 5-thienyl- and 5-furyl-substituted benzodiazepines is described. These compounds were employed to probe the lipophilic pocket (L(3)) of the benzodiazepine receptor (BzR) and to determine the effect of occupation of L(3) on biological activity. Of the new analogs synthesized, the 5-(2-thienyl)-benzodiazepines 6a and 7a displayed high affinity for the BzR (IC50 28 and 18 nM, respectively) and exhibited both anticonvulsant (ED(50) approximate to 9 and 3 mg/kg) and muscle relaxant (ED(50) approximate to 10 and 7 mg/kg) activity. The 5-(3-thienyl)benzodiazepines 6d and 7d displayed only moderate affinity for the BzR (IC50 140 and 110 nM) and exhibited no biological activity (no anticonvulsant or muscle relaxant activity) at doses up to 40 mg/kg. The 5-(2-furyl)benzodiazepines (6b, 7b, 19b and 20b) exhibit low affinities for the BzR. These in vitro and in vivo findings are consistent with our model suggesting that pocket L(3) is very sensitive to lipophilic effects. Thus, decreasing the lipophilicity of functional groups which occupy this region decreases ligand affinity at BzR. The 2'-halogen (F or Cl) substituent of the 5-phenylbenzodiazepines increases ligand affinity in vitro because the active conformation of the phenyl N(4)=C(5)-C(1')=C(2') moiety is syn rather than anti. The syn conformation permits the 2'-halogen (F or Cl) atom to interact at the hydrogen bonding site H-2 and form a stable three-centered hydrogen bond in the proposed ligand binding cleft. The 3-thienyl and 2-furyl groups decrease the lipophilicity of the substituent which occupies L(3) but do not form a hydrogen bond at H-2, thus resulting in a diminished affinity at BzR.
    DOI:
    10.1016/0223-5234(96)88259-6
点击查看最新优质反应信息

文献信息

  • Syntheses of 5-thienyl and 5-furyl-substituted benzodiazepines: probes of the pharmacophore for benzodiazepine receptor agonists
    作者:W Zhang、R Liu、Q Huang、P Zhang、KF Koehler、B Harris、P Skolnick、JM Cook
    DOI:10.1016/0223-5234(96)88259-6
    日期:1995.1
    The synthesis of 5-thienyl- and 5-furyl-substituted benzodiazepines is described. These compounds were employed to probe the lipophilic pocket (L(3)) of the benzodiazepine receptor (BzR) and to determine the effect of occupation of L(3) on biological activity. Of the new analogs synthesized, the 5-(2-thienyl)-benzodiazepines 6a and 7a displayed high affinity for the BzR (IC50 28 and 18 nM, respectively) and exhibited both anticonvulsant (ED(50) approximate to 9 and 3 mg/kg) and muscle relaxant (ED(50) approximate to 10 and 7 mg/kg) activity. The 5-(3-thienyl)benzodiazepines 6d and 7d displayed only moderate affinity for the BzR (IC50 140 and 110 nM) and exhibited no biological activity (no anticonvulsant or muscle relaxant activity) at doses up to 40 mg/kg. The 5-(2-furyl)benzodiazepines (6b, 7b, 19b and 20b) exhibit low affinities for the BzR. These in vitro and in vivo findings are consistent with our model suggesting that pocket L(3) is very sensitive to lipophilic effects. Thus, decreasing the lipophilicity of functional groups which occupy this region decreases ligand affinity at BzR. The 2'-halogen (F or Cl) substituent of the 5-phenylbenzodiazepines increases ligand affinity in vitro because the active conformation of the phenyl N(4)=C(5)-C(1')=C(2') moiety is syn rather than anti. The syn conformation permits the 2'-halogen (F or Cl) atom to interact at the hydrogen bonding site H-2 and form a stable three-centered hydrogen bond in the proposed ligand binding cleft. The 3-thienyl and 2-furyl groups decrease the lipophilicity of the substituent which occupies L(3) but do not form a hydrogen bond at H-2, thus resulting in a diminished affinity at BzR.
查看更多