摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(1S,3R)-1-chloro-3-triphenylmethoxy-4-cyclopentene | 426226-18-8

中文名称
——
中文别名
——
英文名称
(1S,3R)-1-chloro-3-triphenylmethoxy-4-cyclopentene
英文别名
[[(1R,4S)-4-chlorocyclopent-2-en-1-yl]oxy-diphenylmethyl]benzene
(1S,3R)-1-chloro-3-triphenylmethoxy-4-cyclopentene化学式
CAS
426226-18-8
化学式
C24H21ClO
mdl
——
分子量
360.883
InChiKey
APNVLYNEEJLKIG-PKTZIBPZSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6
  • 重原子数:
    26
  • 可旋转键数:
    5
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.17
  • 拓扑面积:
    9.2
  • 氢给体数:
    0
  • 氢受体数:
    1

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (1S,3R)-1-chloro-3-triphenylmethoxy-4-cyclopentene 在 sodium hydride 、 对甲苯磺酸 、 lithium iodide 作用下, 以 四氢呋喃甲醇N,N-二甲基甲酰胺 为溶剂, 反应 37.25h, 生成 (1R,3S)-1-hydroxy-3-(methyl-carboxymethyl)-4-cyclopentene
    参考文献:
    名称:
    Metal Coordination-Based Inhibitors of Adenylyl Cyclase:  Novel Potent P-Site Antagonists
    摘要:
    The adenylyl cyclases (ACS) are a family of intracellular enzymes associated with signal transduction by virtue of their ability to convert ATP to cAMP. The catalytic mechanism of this transformation proceeds through initial binding of ATP to the so-called purine binding site (P-site) of the enzyme followed by metal-mediated cyclization with loss of pyrophosphate. Crystallographic analysis of ACs with known inhibitors reveals the presence of two metals in the active site. Presently, nine isoforms of adenylyl cyclase are known, and unique isoform combinations are expressed in a tissue-specific manner. The development of isoform-specific inhibitors of adenylyl cyclase may prove to be a useful strategy toward the design of unique signal transduction inhibitors. To develop novel AC inhibitors, we have chosen an approach to inhibitor design utilizing an adenine ring system joined to a metal-coordinating hydroxamic acid via various linkers. Previous work in our group has validated this approach and identified novel inhibitors that possess an adenine ring joined to a metal-coordinating hydroxamic acid through flexible acyclic linkers (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 30853088). Subsequent studies have focused on the introduction of conformational restrictions into the tether of the inhibitors with the goal of increasing potency (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 3089-3092). Building upon the favorable spatial positioning of the adenine and hydroxamate groups coupled with potentially favorable entropic factors, the unit joining the carbocycle to the hydroxamate was explored further and a stereochemical-based SAR was elucidated, leading to a new series of highly potent AC inhibitors.
    DOI:
    10.1021/jm0205604
  • 作为产物:
    描述:
    2-环戊烯-1-醇,4-[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]-,(1R,4S)- 在 甲醇4-二甲氨基吡啶四丁基氟化铵sodium methylate甲基磺酰氯N,N-二异丙基乙胺三苯基膦偶氮二甲酸二乙酯 作用下, 以 四氢呋喃二氯甲烷N,N-二甲基甲酰胺 为溶剂, 反应 67.0h, 生成 (1S,3R)-1-chloro-3-triphenylmethoxy-4-cyclopentene
    参考文献:
    名称:
    Metal Coordination-Based Inhibitors of Adenylyl Cyclase:  Novel Potent P-Site Antagonists
    摘要:
    The adenylyl cyclases (ACS) are a family of intracellular enzymes associated with signal transduction by virtue of their ability to convert ATP to cAMP. The catalytic mechanism of this transformation proceeds through initial binding of ATP to the so-called purine binding site (P-site) of the enzyme followed by metal-mediated cyclization with loss of pyrophosphate. Crystallographic analysis of ACs with known inhibitors reveals the presence of two metals in the active site. Presently, nine isoforms of adenylyl cyclase are known, and unique isoform combinations are expressed in a tissue-specific manner. The development of isoform-specific inhibitors of adenylyl cyclase may prove to be a useful strategy toward the design of unique signal transduction inhibitors. To develop novel AC inhibitors, we have chosen an approach to inhibitor design utilizing an adenine ring system joined to a metal-coordinating hydroxamic acid via various linkers. Previous work in our group has validated this approach and identified novel inhibitors that possess an adenine ring joined to a metal-coordinating hydroxamic acid through flexible acyclic linkers (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 30853088). Subsequent studies have focused on the introduction of conformational restrictions into the tether of the inhibitors with the goal of increasing potency (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 3089-3092). Building upon the favorable spatial positioning of the adenine and hydroxamate groups coupled with potentially favorable entropic factors, the unit joining the carbocycle to the hydroxamate was explored further and a stereochemical-based SAR was elucidated, leading to a new series of highly potent AC inhibitors.
    DOI:
    10.1021/jm0205604
点击查看最新优质反应信息

文献信息

  • Regulation of type 5 adenylyl cyclase for treatment of neurodegenerative and cardiac diseases
    申请人:Vatner F. Stephen
    公开号:US20060252774A1
    公开(公告)日:2006-11-09
    The invention concerns pharmaceutical compositions that contain a compound or compounds that can effectively regulate the activity of Type 5 Adenylyl Cyclase and methods for treatment of neurological diseases and disorders, as well as motor function loss therefrom, as well as treatment for cardiac conditions and diseases including conditions characterized by abnormal heart rate.
    这项发明涉及含有一种或多种能够有效调节第5型腺苷酸环化酶活性的化合物的药物组合物,以及治疗神经系统疾病和障碍、以及由此引起的运动功能丧失的方法,以及用于治疗心脏疾病和疾病的方法,包括以异常心率为特征的情况。
  • Adenine based inhibitors of adenylyl cyclase, pharmaceutical compositions, and method of use thereof
    申请人:——
    公开号:US20020068745A1
    公开(公告)日:2002-06-06
    The present invention relates to derivatives and analogues of adenine, which inhibit adenylyl cyclase activity. The present invention also relates to a method of preventing and inhibiting a patient's fibroproliferative vasculopathy following vascular injury or a vascular surgical operation which includes administering to the patient, an effective amount of a compound according to the invention subsequent to a vascular injury, or subsequent to a vascular surgical operation, for one to two weeks after the injury or surgical operation, effective to treat or prevent a patient's fibroproliferative vasculopathy such as chronic allograft rejection or vascular restenosis following vascular trauma. The present invention also relates to a method for measuring the inhibition of adenylyl cyclase activity and a method for treating congestive heart failure.
    本发明涉及腺嘌呤的衍生物和类似物,其抑制腺苷酸环化酶活性。本发明还涉及一种预防和抑制患者血管损伤后纤维增殖性血管病的方法,或血管手术后的方法,包括向患者施用根据本发明的化合物的有效量,即在血管损伤后或血管手术后的一到两周内,有效地治疗或预防患者的纤维增殖性血管病,如慢性移植物排斥或血管创伤后的血管再狭窄。本发明还涉及一种测量腺苷酸环化酶活性抑制的方法和一种治疗充血性心力衰竭的方法。
  • Metal Coordination-Based Inhibitors of Adenylyl Cyclase:  Novel Potent P-Site Antagonists
    作者:Daniel E. Levy、Ming Bao、Diana B. Cherbavaz、James E. Tomlinson、David M. Sedlock、Charles J. Homcy、Robert M. Scarborough
    DOI:10.1021/jm0205604
    日期:2003.5.1
    The adenylyl cyclases (ACS) are a family of intracellular enzymes associated with signal transduction by virtue of their ability to convert ATP to cAMP. The catalytic mechanism of this transformation proceeds through initial binding of ATP to the so-called purine binding site (P-site) of the enzyme followed by metal-mediated cyclization with loss of pyrophosphate. Crystallographic analysis of ACs with known inhibitors reveals the presence of two metals in the active site. Presently, nine isoforms of adenylyl cyclase are known, and unique isoform combinations are expressed in a tissue-specific manner. The development of isoform-specific inhibitors of adenylyl cyclase may prove to be a useful strategy toward the design of unique signal transduction inhibitors. To develop novel AC inhibitors, we have chosen an approach to inhibitor design utilizing an adenine ring system joined to a metal-coordinating hydroxamic acid via various linkers. Previous work in our group has validated this approach and identified novel inhibitors that possess an adenine ring joined to a metal-coordinating hydroxamic acid through flexible acyclic linkers (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 30853088). Subsequent studies have focused on the introduction of conformational restrictions into the tether of the inhibitors with the goal of increasing potency (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 3089-3092). Building upon the favorable spatial positioning of the adenine and hydroxamate groups coupled with potentially favorable entropic factors, the unit joining the carbocycle to the hydroxamate was explored further and a stereochemical-based SAR was elucidated, leading to a new series of highly potent AC inhibitors.
查看更多

同类化合物

(3-三苯基甲氨基甲基)吡啶 非马沙坦杂质1 隐色甲紫-d6 隐色孔雀绿-d6 隐色孔雀绿 隐色乙基结晶紫 降钙素杂质10 酸性黄117 酸性蓝119 酚酞啉 酚酞二硫酸钾水合物 萘,1-甲氧基-3-甲基 苯酚,4-(1,1-二苯基丙基)- 苯甲醇,4-溴-a-(4-溴苯基)-a-苯基- 苯甲酸,4-(羟基二苯甲基)-,甲基酯 苯甲基N-[(2(三苯代甲基四唑-5-基-1,1联苯基-4-基]-甲基-2-氨基-3-甲基丁酸酯 苯基双-(对二乙氨基苯)甲烷 苯基二甲苯基甲烷 苯基二[2-甲基-4-(二乙基氨基)苯基]甲烷 苯基{二[4-(三氟甲基)苯基]}甲醇 苯基-二(2-羟基-5-氯苯基)甲烷 苄基2,3,4-三-O-苄基-6-O-三苯甲基-BETA-D-吡喃葡萄糖苷 苄基 5-氨基-5-脱氧-2,3-O-异亚丙基-6-O-三苯甲基呋喃己糖苷 苄基 2-乙酰氨基-2-脱氧-6-O-三苯基-甲基-alpha-D-吡喃葡萄糖苷 苄基 2,3-O-异亚丙基-6-三苯甲基-alpha-D-甘露呋喃糖 膦酸,1,2-乙二基二(磷羧基甲基)亚氨基-3,1-丙二基次氮基<三价氮基>二(亚甲基)四-,盐钠 脱氢奥美沙坦-2三苯甲基奥美沙坦脂 美托咪定杂质28 绿茶提取物茶多酚陕西龙孚 结晶紫 磷,三(4-甲氧苯基)甲基-,碘化 碱性蓝 硫代硫酸氢 S-[2-[(3,3,3-三苯基丙基)氨基]乙基]酯 盐酸三苯甲基肼 白孔雀石绿-d5 甲酮,(反-4-氨基-4-甲基环己基)-4-吗啉基- 甲基三苯基甲基醚 甲基6-O-(三苯基甲基)-ALPHA-D-吡喃甘露糖苷三苯甲酸酯 甲基3,4-O-异亚丙基-2-O-甲基-6-O-三苯甲基吡喃己糖苷 甲基2-甲基-N-{[4-(三氟甲基)苯基]氨基甲酰}丙氨酸酸酯 甲基2,3,4-三-O-苯甲酰基-6-O-三苯甲基-ALPHA-D-吡喃葡萄糖苷 甲基2,3,4-三-O-苄基-6-O-三苯甲基-ALPHA-D-吡喃葡萄糖苷 甲基2,3,4-三-O-(苯基甲基)-6-O-(三苯基甲基)-ALPHA-D-吡喃半乳糖苷 甲基-6-O-三苯基甲基-alpha-D-吡喃葡萄糖苷 甲基(1-trityl-1H-imidazol-4-yl)乙酸酯 甲基 2,3,4-三-O-苄基-6-O-三苯基甲基-ALPHA-D-吡喃甘露糖苷 环丙胺,1-(1-甲基-1-丙烯-1-基)- 溶剂紫9 溴化N,N,N-三乙基-2-(三苯代甲基氧代)乙铵 海涛林