Gas chromatography–mass spectrometric analysis of oxidative reactions of [19,19-2H2]19-hydroxy-3-deoxy androgens by placental aromatase
摘要:
Aromatase is a cytochrome P-450 enzyme complex that catalyzes the conversion of androst-4-ene-3,17-dione (AD) to estrone through three sequential oxidations of the 19-methyl group. 3-DeoxyAD (1) and its 5-ene isomer 4 are potent and good competitive aromatase inhibitors, which are converted by aromatase to the aldehyde derivatives 3 and 6, respectively, through 19-hydroxy intermediates 2 and 5, respectively. To study the deuterium isotope effect on the conversions of 19-ols 2 and 5 into the corresponding 19-als 3 and 6, we initially synthesized [19,19-H-2(2)]19-ols 2 and 5 starting from the corresponding non-labeled 19-als 3 and 6 through (NaBH4)-H-2 reduction of the 19-aldehyde group, followed by oxidation with pyridinium dichromate, and a subsequent NaB2H4 reduction. Approximately 1:1 mixtures of non-labeled (d(0)) and deuterated (d(2)) 19-ols 2 and 5 were separately incubated with human placental microsomes in the presence of NADPH under an air atmosphere, and deuterium contents of the recovered substrates and the 19-aldehyde products were determined by gas chromatography-mass spectrometry. In each experiment, the ratio of d(0) to d(2) of the recovered substrate along with that of do to all of the product were identical to the d(0) to d(2) ratio of the employed substrate irrespective of the incubation time, indicating that the 19-oxygenations of the 3-deoxy steroids 2 and 5 proceeded without a detectable isotope effect, as seen in the aromatization sequence of the natural substrate AD. (c) 2005 Elsevier Inc. All rights reserved.
Gas chromatography–mass spectrometric analysis of oxidative reactions of [19,19-2H2]19-hydroxy-3-deoxy androgens by placental aromatase
摘要:
Aromatase is a cytochrome P-450 enzyme complex that catalyzes the conversion of androst-4-ene-3,17-dione (AD) to estrone through three sequential oxidations of the 19-methyl group. 3-DeoxyAD (1) and its 5-ene isomer 4 are potent and good competitive aromatase inhibitors, which are converted by aromatase to the aldehyde derivatives 3 and 6, respectively, through 19-hydroxy intermediates 2 and 5, respectively. To study the deuterium isotope effect on the conversions of 19-ols 2 and 5 into the corresponding 19-als 3 and 6, we initially synthesized [19,19-H-2(2)]19-ols 2 and 5 starting from the corresponding non-labeled 19-als 3 and 6 through (NaBH4)-H-2 reduction of the 19-aldehyde group, followed by oxidation with pyridinium dichromate, and a subsequent NaB2H4 reduction. Approximately 1:1 mixtures of non-labeled (d(0)) and deuterated (d(2)) 19-ols 2 and 5 were separately incubated with human placental microsomes in the presence of NADPH under an air atmosphere, and deuterium contents of the recovered substrates and the 19-aldehyde products were determined by gas chromatography-mass spectrometry. In each experiment, the ratio of d(0) to d(2) of the recovered substrate along with that of do to all of the product were identical to the d(0) to d(2) ratio of the employed substrate irrespective of the incubation time, indicating that the 19-oxygenations of the 3-deoxy steroids 2 and 5 proceeded without a detectable isotope effect, as seen in the aromatization sequence of the natural substrate AD. (c) 2005 Elsevier Inc. All rights reserved.
Compounds useful for treating hypertriglyceridemia
申请人:——
公开号:US20040019026A1
公开(公告)日:2004-01-29
The present invention is directed to a method for treating a patient having hypertriglyceridemia comprising administering thereto a compound of the formula:
1
本发明涉及一种治疗高甘油三酯血症患者的方法,包括向其投药式为1的化合物。
COMPOUNDS USEFUL FOR TREATING HYPERTRIGLYCERIDEMIA
申请人:Aeson Therapeutics Inc.
公开号:EP1351971A2
公开(公告)日:2003-10-15
[EN] COMPOUNDS USEFUL FOR TREATING HYPERTRIGLYCERIDEMIA<br/>[FR] COMPOSES SERVANT A TRAITER L'HYPERTRIGLYCERIDEMIE
申请人:AESON THERAPEUTICS INC
公开号:WO2002028880A2
公开(公告)日:2002-04-11
The present invention is directed to a method for treating a patient having hypertriglyceridemia comprising administering thereto a compound of the formula: I
Gas chromatography–mass spectrometric analysis of oxidative reactions of [19,19-2H2]19-hydroxy-3-deoxy androgens by placental aromatase
作者:Masao Nagaoka、Mitsuteru Numazawa
DOI:10.1016/j.steroids.2005.04.009
日期:2005.11
Aromatase is a cytochrome P-450 enzyme complex that catalyzes the conversion of androst-4-ene-3,17-dione (AD) to estrone through three sequential oxidations of the 19-methyl group. 3-DeoxyAD (1) and its 5-ene isomer 4 are potent and good competitive aromatase inhibitors, which are converted by aromatase to the aldehyde derivatives 3 and 6, respectively, through 19-hydroxy intermediates 2 and 5, respectively. To study the deuterium isotope effect on the conversions of 19-ols 2 and 5 into the corresponding 19-als 3 and 6, we initially synthesized [19,19-H-2(2)]19-ols 2 and 5 starting from the corresponding non-labeled 19-als 3 and 6 through (NaBH4)-H-2 reduction of the 19-aldehyde group, followed by oxidation with pyridinium dichromate, and a subsequent NaB2H4 reduction. Approximately 1:1 mixtures of non-labeled (d(0)) and deuterated (d(2)) 19-ols 2 and 5 were separately incubated with human placental microsomes in the presence of NADPH under an air atmosphere, and deuterium contents of the recovered substrates and the 19-aldehyde products were determined by gas chromatography-mass spectrometry. In each experiment, the ratio of d(0) to d(2) of the recovered substrate along with that of do to all of the product were identical to the d(0) to d(2) ratio of the employed substrate irrespective of the incubation time, indicating that the 19-oxygenations of the 3-deoxy steroids 2 and 5 proceeded without a detectable isotope effect, as seen in the aromatization sequence of the natural substrate AD. (c) 2005 Elsevier Inc. All rights reserved.