摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tert-Butyl-dimethyl-(5-propa-1,2-dienyloxy-pentyloxy)-silane | 197304-86-2

中文名称
——
中文别名
——
英文名称
tert-Butyl-dimethyl-(5-propa-1,2-dienyloxy-pentyloxy)-silane
英文别名
——
tert-Butyl-dimethyl-(5-propa-1,2-dienyloxy-pentyloxy)-silane化学式
CAS
197304-86-2
化学式
C14H28O2Si
mdl
——
分子量
256.461
InChiKey
LPQWRHMYFKQCOI-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.49
  • 重原子数:
    17
  • 可旋转键数:
    9
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.79
  • 拓扑面积:
    18.5
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    tert-Butyl-dimethyl-(5-propa-1,2-dienyloxy-pentyloxy)-silane四丁基氟化铵 作用下, 以 四氢呋喃 为溶剂, 反应 1.5h, 生成 5-Propa-1,2-dienyloxy-pentan-1-ol
    参考文献:
    名称:
    Intramolecular Reaction of (γ-Alkoxyallyl)stannane with Aldehyde:  Origin of the Stereoselectivities
    摘要:
    The intramolecular cyclization of simple acyclic (gamma-alkoxyallyl)stannane aldehydes 1, 2, and 12-15 was investigated to elucidate the relationship between the geometry of the double bond of the allylstannanes, the ring size of cyclic ethers produced by the cyclization, and the procedures for promoting the cyclization. The Lewis acid-mediated cyclization of 1-2, 12-13, and 14-15 gave the trans cyclic ethers 3, 39, and 41, respectively, either predominantly or exclusively irrespective of the geometry of the double bond and of the ring size of the cyclic ethers. The relationship in the thermal cyclization of 1 and 2, which gave the 6-membered cyclic ethers 4 and 3, was straightforward; the Z isomer 1 gave the cis product 4, and the E isomer 2 afforded the trans product 3. However, the relationship in the thermal cyclization of 12 and 13 which afforded the 5-membered cyclic ethers 39 and 40 was different from that expected from the cyclization via the well-accepted cyclic transition state, as observed in the case of 1 and 2. Both the Z (12) and E (13) isomers gave the cis cyclic ether 40 either predominantly or exclusively. The protic acid-mediated (or-catalyzed) cyclization of 12-13 and 14-15 gave the trans cyclic ethers 39 and 41, respectively, regardless of the geometry of the double bonds. On the other hand, the protic acid-promoted cyclization of 1 and 2 was very strange; the Z isomer 1 gave the cis isomer 4, and the E isomer 2 afforded the trans isomer 3. The mechanisms for these cyclization reactions are proposed.
    DOI:
    10.1021/jo971309c
  • 作为产物:
    参考文献:
    名称:
    Intramolecular Reaction of (γ-Alkoxyallyl)stannane with Aldehyde:  Origin of the Stereoselectivities
    摘要:
    The intramolecular cyclization of simple acyclic (gamma-alkoxyallyl)stannane aldehydes 1, 2, and 12-15 was investigated to elucidate the relationship between the geometry of the double bond of the allylstannanes, the ring size of cyclic ethers produced by the cyclization, and the procedures for promoting the cyclization. The Lewis acid-mediated cyclization of 1-2, 12-13, and 14-15 gave the trans cyclic ethers 3, 39, and 41, respectively, either predominantly or exclusively irrespective of the geometry of the double bond and of the ring size of the cyclic ethers. The relationship in the thermal cyclization of 1 and 2, which gave the 6-membered cyclic ethers 4 and 3, was straightforward; the Z isomer 1 gave the cis product 4, and the E isomer 2 afforded the trans product 3. However, the relationship in the thermal cyclization of 12 and 13 which afforded the 5-membered cyclic ethers 39 and 40 was different from that expected from the cyclization via the well-accepted cyclic transition state, as observed in the case of 1 and 2. Both the Z (12) and E (13) isomers gave the cis cyclic ether 40 either predominantly or exclusively. The protic acid-mediated (or-catalyzed) cyclization of 12-13 and 14-15 gave the trans cyclic ethers 39 and 41, respectively, regardless of the geometry of the double bonds. On the other hand, the protic acid-promoted cyclization of 1 and 2 was very strange; the Z isomer 1 gave the cis isomer 4, and the E isomer 2 afforded the trans isomer 3. The mechanisms for these cyclization reactions are proposed.
    DOI:
    10.1021/jo971309c
点击查看最新优质反应信息

文献信息

  • Intramolecular Reaction of (γ-Alkoxyallyl)stannane with Aldehyde:  Origin of the Stereoselectivities
    作者:Isao Kadota、Miho Kawada、Vladimir Gevorgyan、Yoshinori Yamamoto
    DOI:10.1021/jo971309c
    日期:1997.10.1
    The intramolecular cyclization of simple acyclic (gamma-alkoxyallyl)stannane aldehydes 1, 2, and 12-15 was investigated to elucidate the relationship between the geometry of the double bond of the allylstannanes, the ring size of cyclic ethers produced by the cyclization, and the procedures for promoting the cyclization. The Lewis acid-mediated cyclization of 1-2, 12-13, and 14-15 gave the trans cyclic ethers 3, 39, and 41, respectively, either predominantly or exclusively irrespective of the geometry of the double bond and of the ring size of the cyclic ethers. The relationship in the thermal cyclization of 1 and 2, which gave the 6-membered cyclic ethers 4 and 3, was straightforward; the Z isomer 1 gave the cis product 4, and the E isomer 2 afforded the trans product 3. However, the relationship in the thermal cyclization of 12 and 13 which afforded the 5-membered cyclic ethers 39 and 40 was different from that expected from the cyclization via the well-accepted cyclic transition state, as observed in the case of 1 and 2. Both the Z (12) and E (13) isomers gave the cis cyclic ether 40 either predominantly or exclusively. The protic acid-mediated (or-catalyzed) cyclization of 12-13 and 14-15 gave the trans cyclic ethers 39 and 41, respectively, regardless of the geometry of the double bonds. On the other hand, the protic acid-promoted cyclization of 1 and 2 was very strange; the Z isomer 1 gave the cis isomer 4, and the E isomer 2 afforded the trans isomer 3. The mechanisms for these cyclization reactions are proposed.
查看更多

同类化合物

(2-溴乙氧基)-特丁基二甲基硅烷 骨化醇杂质DCP 马来酸双(三甲硅烷)酯 顺式-二氯二(二甲基硒醚)铂(II) 顺-N-(1-(2-乙氧基乙基)-3-甲基-4-哌啶基)-N-苯基苯酰胺 降钙素杂质13 降冰片烯基乙基三甲氧基硅烷 降冰片烯基乙基-POSS 间-氨基苯基三甲氧基硅烷 镁,氯[[二甲基(1-甲基乙氧基)甲硅烷基]甲基]- 锑,二溴三丁基- 铷,[三(三甲基甲硅烷基)甲基]- 铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷 钾(4-{[二甲基(2-甲基-2-丙基)硅烷基]氧基}-1-丁炔-1-基)(三氟)硼酸酯(1-) 金刚烷基乙基三氯硅烷 辛醛,8-[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]- 辛甲基-1,4-二氧杂-2,3,5,6-四硅杂环己烷 辛基铵甲烷砷酸盐 辛基衍生化硅胶(C8)ZORBAX?LP100/40C8 辛基硅三醇 辛基甲基二乙氧基硅烷 辛基三甲氧基硅烷 辛基三氯硅烷 辛基(三苯基)硅烷 辛乙基三硅氧烷 路易氏剂-3 路易氏剂-2 路易士剂 试剂3-[Tris(trimethylsiloxy)silyl]propylvinylcarbamate 试剂2-(Trimethylsilyl)cyclopent-2-en-1-one 试剂11-Azidoundecyltriethoxysilane 西甲硅油杂质14 衣康酸二(三甲基硅基)酯 苯胺,4-[2-(三乙氧基甲硅烷基)乙基]- 苯磺酸,羟基-,盐,单钠聚合甲醛,1,3,5-三嗪-2,4,6-三胺和脲 苯甲醇,a-[(三苯代甲硅烷基)甲基]- 苯基二甲基氯硅烷 苯基二甲基乙氧基硅 苯基乙酰氧基三甲基硅烷 苯基三辛基硅烷 苯基三甲氧基硅烷 苯基三乙氧基硅烷 苯基三丁酮肟基硅烷 苯基三(异丙烯氧基)硅烷 苯基三(2,2,2-三氟乙氧基)硅烷 苯基(3-氯丙基)二氯硅烷 苯基(1-哌啶基)甲硫酮 苯乙基三苯基硅烷 苯丙基乙基聚甲基硅氧烷 苯-1,3,5-三基三(三甲基硅烷)