Design, Synthesis, and Biological Evaluation of Halogenated N-(2-(4-Oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: Discovery of an Isoform-Selective Small Molecule Phospholipase D2 Inhibitor
摘要:
Phospholipase D (PLD) catalyzes the conversion of phosphatidylcholine to the lipid second messenger phosphatidic acid. Two mammalian isoforms of PLD have been identified, PLD I and PLD2, which share 53% sequence identity and are subject to different regulatory mechanisms. Inhibition of PLD enzymatic activity leads to increased cancer cell apoptosis, decreased cancer cell invasion, and decreased metastasis of cancer cells; therefore, the development of isoform-specific, PLD inhibitors is a novel approach for the treatment of cancer. Previously, we developed potent dual PLD1/PLD2, PLD1-specific (> 1700-fold selective), and moderately PLD2-preferring (> 10-fold preferring) inhibitors. Here, we describe a matrix library strategy that afforded the most potent (PLD2 IC(50) = 20 nM) and selective (75-fold selective versus PLD1) PLD2 inhibitor to date. N-(2-(1-(3-fluorophenyl)-4-oxo-1.3.8-triazaspiro[4.5]decan-8-yl)ethyl)-2-naphthamide (22a), with an acceptable DMPK profile. Thus, these new isoform-selective PLD inhibitors will enable researchers to dissect the signaling roles and therapeutic potential of individual PLD isoforms to an unprecedented degree.
Design, Synthesis, and Biological Evaluation of Halogenated N-(2-(4-Oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: Discovery of an Isoform-Selective Small Molecule Phospholipase D2 Inhibitor
摘要:
Phospholipase D (PLD) catalyzes the conversion of phosphatidylcholine to the lipid second messenger phosphatidic acid. Two mammalian isoforms of PLD have been identified, PLD I and PLD2, which share 53% sequence identity and are subject to different regulatory mechanisms. Inhibition of PLD enzymatic activity leads to increased cancer cell apoptosis, decreased cancer cell invasion, and decreased metastasis of cancer cells; therefore, the development of isoform-specific, PLD inhibitors is a novel approach for the treatment of cancer. Previously, we developed potent dual PLD1/PLD2, PLD1-specific (> 1700-fold selective), and moderately PLD2-preferring (> 10-fold preferring) inhibitors. Here, we describe a matrix library strategy that afforded the most potent (PLD2 IC(50) = 20 nM) and selective (75-fold selective versus PLD1) PLD2 inhibitor to date. N-(2-(1-(3-fluorophenyl)-4-oxo-1.3.8-triazaspiro[4.5]decan-8-yl)ethyl)-2-naphthamide (22a), with an acceptable DMPK profile. Thus, these new isoform-selective PLD inhibitors will enable researchers to dissect the signaling roles and therapeutic potential of individual PLD isoforms to an unprecedented degree.
METHODS AND COMPOSITIONS OF TREATING HIV INFECTION
申请人:Vanderbilt University
公开号:US20140163055A1
公开(公告)日:2014-06-12
Disclosed are methods of treating HIV infections comprising, in one aspect, administering compounds that are phospholipase D inhibitors. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
ANTIVIRAL THERAPIES WITH PHOSPHOLIPASE D INHIBITORS
申请人:Lindsley Craig W.
公开号:US20150025041A1
公开(公告)日:2015-01-22
Disclosed are methods of treating viral infections comprising, in one aspect, administering compounds that are phospholipase D inhibitors. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention. In accordance with the purpose(s) of the invention, as embodied and broadly described herein, the invention, in one aspect, relates to antiviral therapies. For example, compounds having Phospholipase D activity (e.g., isoform selective Phospholipase D inhibitors) can be useful in antiviral therapies (e.g., influenza treatments).
Methods and Compositions for Treating HIV Infection
申请人:Vanderbilt University
公开号:US20160296506A1
公开(公告)日:2016-10-13
Disclosed are methods of treating HIV infections comprising, in one aspect, administering compounds that are phospholipase D inhibitors. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
METHODS AND COMPOSITIONS COMPRISING AKT INHIBITORS AND/OR PHOSPHOLIPASE D INHIBITORS
申请人:Vanderbilt University
公开号:US20170319611A1
公开(公告)日:2017-11-09
Disclosed are methods of treating viral infections or disorders of uncontrolled proliferation comprising, in one aspect, administering compounds that are phospholipase D inhibitors and/or Akt therapeutic agents. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.