Acidities and homolytic bond dissociation energies (BDEs) of benzyl-type carbon-hydrogen bonds in sterically congested substrates
作者:F. G. Bordwell、Jin Pei Cheng、A. V. Satish、Cary L. Twyman
DOI:10.1021/jo00050a032
日期:1992.11
Equilibrium acidities in DMSO and BDEs for the benzylic C-H bonds are reported for 19 triphenylmethanes, three 9,10-dihydroanthracenes, and nine xanthenes. The phenyl groups in triphenylmethane, 9-phenyl-9,10-dihydroanthracene, and 9-phenylxanthene are shown to be constrained in their ability to delocalize either the negative charges in the anions formed by loss of a proton or the odd electrons released by loss of hydrogen atom. Analysis of the pK(HA) values showed, however, that strong solvation of para electron-withdrawing substituents in a phenyl ring of each of these substrates caused the corresponding anion to adopt a conformation where effective conjugative overlap occurred between the substituent and the carbanion via the phenyl ring. In other words, a conformational change was induced via a substituent solvation assisted resonance (SSAR) effect. In sharp contrast to these large solvation-induced substituent effects on anion stabilities, remote substituent effects on radical stabilities in these congested species were found to be negligible. Substitution of either a p-toluenesulfonyl or CN group into the 9-position of xanthene caused a large increase in acidity, but the p-CH3C6H4SO2 group caused an increase in the BDE of the acidic C-H bond, whereas the CN group caused a small decrease.