Optimization of 5-substituted thiazolyl ureas and 6-substituted imidazopyridines as potential HIV-1 latency reversing agents
摘要:
A persistent latent reservoir of virus in CD4(+) T cells is a major barrier to cure HIV. Activating viral transcription in latently infected cells using small molecules is one strategy being explored to eliminate latency. We previously described the use of a FlpIn.FM HEK293 cellular assay to identify and then optimize the 2-acylaminothiazole class to exhibit modest activation of HIV gene expression. Here, we implement two strategies to further improve the activation of viral gene expression and physicochemical properties of this class. Firstly, we explored rigidification of the central oxy-carbon linker with a variety of saturated heterocycles, and secondly, investigated bioisosteric replacement of the 2-acylaminothiazole moiety. The optimization process afforded lead compounds (74 and 91) from the 2-piperazinyl thiazolyl urea and the imidazopyridine class. The lead compounds from each class demonstrate potent activation of HIV gene expression in the FlpIn.FM HEK293 cellular assay (both with LTR EC(50)s of 80 nM) and in the Jurkat Latency 10.6 cell model (LTR EC50 220 and 320 nM respectively), but consequently activate gene expression non-specifically in the FlpIn.FM HEK293 cellular assay (CMV EC50 70 and 270 nM respectively) manifesting in cellular cytotoxicity. The lead compounds have potential for further development as novel latency reversing agents. (C) 2020 Elsevier Masson SAS. All rights reserved.
Selective Amination of Polyhalopyridines Catalyzed by a Palladium−Xantphos Complex
摘要:
Amination of 5-bromo-2-chloropyridine (1a) catalyzed by a palladium-Xantphos complex predominately gives 5-amino-2-chloropyridine product 3a in 96% isolated yield and excellent chemoselectivity (3a/4a = 97:3). Amination of 2,5-dibromopyridine (11) under the same conditions exclusively affords 2-amino-5-bromopyridine 4a.
Selective Amination of Polyhalopyridines Catalyzed by a Palladium−Xantphos Complex
作者:Jianguo Ji、Tao Li、William H. Bunnelle
DOI:10.1021/ol0357696
日期:2003.11.1
Amination of 5-bromo-2-chloropyridine (1a) catalyzed by a palladium-Xantphos complex predominately gives 5-amino-2-chloropyridine product 3a in 96% isolated yield and excellent chemoselectivity (3a/4a = 97:3). Amination of 2,5-dibromopyridine (11) under the same conditions exclusively affords 2-amino-5-bromopyridine 4a.
Optimization of 5-substituted thiazolyl ureas and 6-substituted imidazopyridines as potential HIV-1 latency reversing agents
作者:William Nguyen、Jonathan Jacobson、Kate E. Jarman、Timothy R. Blackmore、Helene Jousset Sabroux、Sharon R. Lewin、Damian F. Purcell、Brad E. Sleebs
DOI:10.1016/j.ejmech.2020.112254
日期:2020.6
A persistent latent reservoir of virus in CD4(+) T cells is a major barrier to cure HIV. Activating viral transcription in latently infected cells using small molecules is one strategy being explored to eliminate latency. We previously described the use of a FlpIn.FM HEK293 cellular assay to identify and then optimize the 2-acylaminothiazole class to exhibit modest activation of HIV gene expression. Here, we implement two strategies to further improve the activation of viral gene expression and physicochemical properties of this class. Firstly, we explored rigidification of the central oxy-carbon linker with a variety of saturated heterocycles, and secondly, investigated bioisosteric replacement of the 2-acylaminothiazole moiety. The optimization process afforded lead compounds (74 and 91) from the 2-piperazinyl thiazolyl urea and the imidazopyridine class. The lead compounds from each class demonstrate potent activation of HIV gene expression in the FlpIn.FM HEK293 cellular assay (both with LTR EC(50)s of 80 nM) and in the Jurkat Latency 10.6 cell model (LTR EC50 220 and 320 nM respectively), but consequently activate gene expression non-specifically in the FlpIn.FM HEK293 cellular assay (CMV EC50 70 and 270 nM respectively) manifesting in cellular cytotoxicity. The lead compounds have potential for further development as novel latency reversing agents. (C) 2020 Elsevier Masson SAS. All rights reserved.