摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(2-ethylbutoxy)-2-oxo-1,3,2-dioxaphospholane

中文名称
——
中文别名
——
英文名称
2-(2-ethylbutoxy)-2-oxo-1,3,2-dioxaphospholane
英文别名
2-(2-Ethylbutoxy)-2-oxo-1,3,2-dioxaphospholane;2-(2-ethylbutoxy)-1,3,2λ5-dioxaphospholane 2-oxide
2-(2-ethylbutoxy)-2-oxo-1,3,2-dioxaphospholane化学式
CAS
——
化学式
C8H17O4P
mdl
——
分子量
208.194
InChiKey
URVOMRAJDJZERH-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.3
  • 重原子数:
    13
  • 可旋转键数:
    5
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    44.8
  • 氢给体数:
    0
  • 氢受体数:
    4

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    改善紫杉醇递送:聚乙二醇化聚磷酸酯基纳米载体的体外和体内表征
    摘要:
    纳米材料通过在局部提供高浓度治疗剂的持续释放,特别是当给药途径允许直接进入患病组织时,具有提供针对破坏性疾病的有效治疗的巨大潜力。可生物降解的聚磷酸酯基聚合物胶束和壳交联膝状纳米粒子 (SCK) 由两亲性嵌段接枝三元共聚物 PEBP-b-PBYP-g-PEG 设计而成,可有效结合高浓度的紫杉醇 (PTX)。制备了物理负载 PTX 的分散良好的纳米粒子,表现出理想的理化特性。将 10 wt% PTX 封装到胶束或 SCK 中,允许 PTX 的水悬浮液浓度高达 4.8 mg/mL,相比之下 <2。单独药物的水溶性为 0 μg/mL。药物释放研究表明,从这些纳米结构中释放的 PTX 是通过结构-功能关系定义的,通过胶束结构的交联形成 SCK,持续释放的 PTX 的半衰期加倍。在体外,物理负载的胶束和 SCK 纳米治疗剂证明了对骨肉瘤细胞系的 IC50 值,骨肉瘤细胞系已知转移到肺(CCH-OS-O
    DOI:
    10.1021/ja512616s
  • 作为产物:
    描述:
    2-乙基-1-丁醇2-氯-2-氧-1,3,2-二氧磷杂环戊烷三乙胺 作用下, 以 四氢呋喃 为溶剂, 以73%的产率得到2-(2-ethylbutoxy)-2-oxo-1,3,2-dioxaphospholane
    参考文献:
    名称:
    Rapid and Versatile Construction of Diverse and Functional Nanostructures Derived from a Polyphosphoester-Based Biomimetic Block Copolymer System
    摘要:
    A rapid and efficient approach for the preparation and modification of a versatile class of functional polymer nanoparticles has been developed, for which the entire engineering process from small molecules to polymers to nanoparticles bypasses typical slow and inefficient procedures and rather employs a series of steps that capture fully the "click" chemistry concepts that have greatly facilitated the preparation of complex polymer materials over the past decade. The construction of various nanoparticles with functional complexity from a versatile platform is a challenging aim to provide materials for fundamental studies and also optimization toward a diverse range of applications. In this paper, we demonstrate the rapid and facile preparation of a family of nanoparticles with different surface charges and functionalities based on a biodegradable polyphosphoester block copolymer system. From a retrosynthetic point of view, the nonionic, anionic, cationic, and zwitterionic micelles with hydrodynamic diameters between 13 and 21 nm and great size uniformity were quickly formed by suspending, independently, four amphiphilic diblock polyphosphoesters into water, which were functionalized from the same parental hydrophobic functional AB diblock polyphosphoester by click type thiol-yne reactions The well-defined (PDI < 1.2) hydrophobic functional AB diblock polyphosphoester was synthesized by an ultrafast (<5 min) organocatalyzed ring opening polymerization in a two-step, one pot manner with the quantitative conversions of two kinds of cyclic phospholane monomers. The whole programmable process starting from small molecules to nanoparticles could be completed within 6 h, as the most rapid approach for the anionic and nonionic nanoparticles, although the cationic and zwitterionic nanoparticles required ca. 2 days due to purification by dialysis. The micelles showed high biocompatibility, with even the cationic micelles exhibiting a 6-fold lower cytotoxicity toward RAW 264.7 mouse macrophage cells, as compared to the commercial transfection agent Lipofectamine.
    DOI:
    10.1021/ja309037m
点击查看最新优质反应信息

文献信息

  • COMPOSITIONS AND METHODS FOR INHIBITION OF THE JAK PATHWAY
    申请人:Rigel Pharmaceuticals, Inc.
    公开号:US20200216431A1
    公开(公告)日:2020-07-09
    Disclosed are compounds of formula I, compositions containing them, and methods of use for the compounds and compositions in the treatment of conditions in which modulation of the JAK pathway or inhibition of JAK kinases, particularly JAK 2 and JAK3, are therapeutically useful.
  • Rapid and Versatile Construction of Diverse and Functional Nanostructures Derived from a Polyphosphoester-Based Biomimetic Block Copolymer System
    作者:Shiyi Zhang、Jiong Zou、Fuwu Zhang、Mahmoud Elsabahy、Simcha E. Felder、Jiahua Zhu、Darrin J. Pochan、Karen L. Wooley
    DOI:10.1021/ja309037m
    日期:2012.11.7
    A rapid and efficient approach for the preparation and modification of a versatile class of functional polymer nanoparticles has been developed, for which the entire engineering process from small molecules to polymers to nanoparticles bypasses typical slow and inefficient procedures and rather employs a series of steps that capture fully the "click" chemistry concepts that have greatly facilitated the preparation of complex polymer materials over the past decade. The construction of various nanoparticles with functional complexity from a versatile platform is a challenging aim to provide materials for fundamental studies and also optimization toward a diverse range of applications. In this paper, we demonstrate the rapid and facile preparation of a family of nanoparticles with different surface charges and functionalities based on a biodegradable polyphosphoester block copolymer system. From a retrosynthetic point of view, the nonionic, anionic, cationic, and zwitterionic micelles with hydrodynamic diameters between 13 and 21 nm and great size uniformity were quickly formed by suspending, independently, four amphiphilic diblock polyphosphoesters into water, which were functionalized from the same parental hydrophobic functional AB diblock polyphosphoester by click type thiol-yne reactions The well-defined (PDI < 1.2) hydrophobic functional AB diblock polyphosphoester was synthesized by an ultrafast (<5 min) organocatalyzed ring opening polymerization in a two-step, one pot manner with the quantitative conversions of two kinds of cyclic phospholane monomers. The whole programmable process starting from small molecules to nanoparticles could be completed within 6 h, as the most rapid approach for the anionic and nonionic nanoparticles, although the cationic and zwitterionic nanoparticles required ca. 2 days due to purification by dialysis. The micelles showed high biocompatibility, with even the cationic micelles exhibiting a 6-fold lower cytotoxicity toward RAW 264.7 mouse macrophage cells, as compared to the commercial transfection agent Lipofectamine.
  • Improving Paclitaxel Delivery: <i>In Vitro</i> and <i>In Vivo</i> Characterization of PEGylated Polyphosphoester-Based Nanocarriers
    作者:Fuwu Zhang、Shiyi Zhang、Stephanie F. Pollack、Richen Li、Amelia M. Gonzalez、Jingwei Fan、Jiong Zou、Sarah E. Leininger、Adriana Pavía-Sanders、Rachel Johnson、Laura D. Nelson、Jeffery E. Raymond、Mahmoud Elsabahy、Dennis M. P. Hughes、Mark W. Lenox、Tiffany P. Gustafson、Karen L. Wooley
    DOI:10.1021/ja512616s
    日期:2015.2.11
    form SCKs. In vitro, physically loaded micellar and SCK nanotherapeutics demonstrated IC50 values against osteosarcoma cell lines, known to metastasize to the lungs (CCH-OS-O and SJSA), similar to the pharmaceutical Taxol formulation. Evaluation of these materials in vivo has provided an understanding of the effects of nanoparticle structure-function relationships on intratracheal delivery and related
    纳米材料通过在局部提供高浓度治疗剂的持续释放,特别是当给药途径允许直接进入患病组织时,具有提供针对破坏性疾病的有效治疗的巨大潜力。可生物降解的聚磷酸酯基聚合物胶束和壳交联膝状纳米粒子 (SCK) 由两亲性嵌段接枝三元共聚物 PEBP-b-PBYP-g-PEG 设计而成,可有效结合高浓度的紫杉醇 (PTX)。制备了物理负载 PTX 的分散良好的纳米粒子,表现出理想的理化特性。将 10 wt% PTX 封装到胶束或 SCK 中,允许 PTX 的水悬浮液浓度高达 4.8 mg/mL,相比之下 <2。单独药物的水溶性为 0 μg/mL。药物释放研究表明,从这些纳米结构中释放的 PTX 是通过结构-功能关系定义的,通过胶束结构的交联形成 SCK,持续释放的 PTX 的半衰期加倍。在体外,物理负载的胶束和 SCK 纳米治疗剂证明了对骨肉瘤细胞系的 IC50 值,骨肉瘤细胞系已知转移到肺(CCH-OS-O
查看更多

同类化合物

尿苷5'-二磷酸酯溴乙酰醇 N,N-二乙基-4-甲基-1,3,2-二氧杂磷杂环戊烷-2-胺 4,4,5,5-四甲基-1,3,2-二氧磷杂环戊烷-2-醇 2-氯-4-甲基-1,3,2-二氧杂磷杂环戊烷 2-氯-4,4,5,5-四甲基-1,3,2-二氧磷杂环戊烷 2-氯-1,3,2-二氧磷杂环戊烷 (3,5-二甲基苯基)[羟基(吡啶-4-基甲基)-lambda~5~-氮烷基]甲酮 2-(2-ethylbutoxy)-2-oxo-1,3,2-dioxaphospholane 2-(tert-butoxycarbonylamino)ethoxy-2-oxo-1,3,2-dioxaphospholane 5-dimethylamino-7-isopropylidene-8,8-dimethyl-1,4,6-trioxa-5λ5-phospha-spiro[4.4]nonan-9-one 5-dipropylaminomethyl-1,4,6,9-tetraoxa-5-phosphaspiro<4.4>nonane ethylenedioxy-O-(4,4-dimethyl-1,3-butadien-2-yl)phosphite pentamethyl-2,3,3,4,4 dioxaphospholane-1,3,2 propargyl ethylene phosphate 2-methylthio-4,4,5,5-tetrakis(trifluoromethyl)-1,3,2λ5-dioxaphospholane 2,2-bis(diethylamino)-2-(1,1,1,3,3,3-hexafluoro)isopropoxy-4,4,5,5-tetrakis(trifluoromethyl)-1,3,2λ5ς5-dioxaphospholane 4,4,5,5-tetrakis(trifluoromethyl)-2-<2,2,2-trifluoro-1-(trifluoromethyl)ethoxy>-spiro-<1,3,2λ5-dioxaphospholane-2,2'-(1,3,2λ5) dioxaphosphorinane> 4-chloromethyl-[1,3,2]dioxaphospholane 2-oxide 5-Methoxy-2,2,3,3-tetramethyl-7,9-bis(trifluoromethyl)-1,4,6-trioxa-5lambda5-phosphaspiro[4.4]non-7-en-9-ol 2,2-Dimethoxy-2-methyl-4,4,5,5-tetrakis(trifluoromethyl)-1,3,2lambda5-dioxaphospholane 5,7-Dimethyl-2,2,3,3,9,9,10,10-octakis(trifluoromethyl)-1,4,6,8,11-pentaoxa-5lambda5,7lambda5-diphosphadispiro[4.1.47.35]tetradecane Butylamino-ethylendioxyphosphin 5-Dichloromethyl-1,4,6,9-tetraoxa-5λ5-phospha-spiro[4.4]nonane-2,7-dione 5-Fluoro-1,4,6,9-tetraoxa-5λ5-phospha-spiro[4.4]nonane-2,7-dione Ethylendioxytributylphosphoran 2-Thiono-2-t-butyl-1,3,2-dioxaphospholan (5-TB-5-13;5'-TB-5-13)-2,2,3,3,2',2',3',3'-octamethyl-5,5'-ethane-1,2-diyldioxy-bis-(1,4,6,9-tetraoxa-5λ5-phospha-spiro[4.4]nonane) (1,4-Dioxa-6,9-dithia-5λ5-phospha-spiro[4.4]non-5-yl)-dimethyl-amine 5-Trimethylsilanylmethyl-1,4,6,9-tetraoxa-5λ5-phospha-spiro[4.4]nonane-2,7-dione 5-Isopropyl-1,4,6,9-tetraoxa-5λ5-phospha-spiro[4.4]nonane-2,7-dione 5-(2,2,2-Trifluoro-1-trifluoromethyl-ethoxy)-1,4,6,9-tetraoxa-5λ5-phospha-spiro[4.4]nonane 2,2,2-Tris-(2,2,2-trifluoro-1-trifluoromethyl-ethoxy)-2λ5-[1,3,2]dioxaphospholane 2,2,2-trichloro-4,4-bis-chlorocarbonylmethyl-2λ5-[1,3,2]dioxaphospholan-5-one 5,6,7,12-Tetramethyl-2,2,3,3,9,9,10,10-octakis-trifluoromethyl-1,4,8,11-tetraoxa-6,12-diaza-5λ5,7λ5-diphospha-dispiro[4.1.4.1]dodecane 2,2-Difluoro-4,4,5,5-tetrakis-trifluoromethyl-2λ5-[1,3,2]dioxaphospholane 2-Fluoro-4,4,5,5-tetrakis-trifluoromethyl-2λ5-[1,3,2]dioxaphospholane (2-TB-5-12)-2-fluoro-4,4,5,5-tetrakis-trifluoromethyl-2,2-bis-(2,2,2-trifluoro-1-trifluoromethyl-ethoxy)-2λ5-[1,3,2]dioxaphospholane Triethoxy-ethylendioxy-phosphoran 4,4,5,5-Tetrakis(trifluormethyl)-1,3,2λ5-dioxaphospholan-2,2,2-triamin 2-fluoro-4,4,5,5-tetrakis(trifluoromethyl)-1,3,2λ5-dioxaphospholane-2,2-diamine 2-Fluor-4,4,5,5-tetrakis-(trifluormethyl)-(1,3,2λ5-dioxaphospholan 5,7-difluoro-2,2,3,3,9,9,10,10-octakis-trifluoromethyl-6,12-bis-trimethylsilanyl-1,4,8,11-tetraoxa-6,12-diaza-5λ5,7λ5-diphospha-dispiro[4.1.4.1]dodecane [2-(1,1,1,3,3,3-hexamethyl-disilazan-2-yl)-4,4,5,5-tetrakis-trifluoromethyl-2λ5-[1,3,2]dioxaphospholan-2-ylidene]-trimethylsilanyl-amine 2,2-Di-tert-Butyl-2-chlor-4,4,5,5-tetrakis(trifluormethyl)-1,3,2λ5-dioxaphospholan 2-fluoro-2,2-dimethyl-4,4,5,5-tetrakis-trifluoromethyl-2λ5-[1,3,2]dioxaphospholane 2-fluoro-2,2-dimethyl-3,3,5,5-tetrakis-trifluoromethyl-2λ5-[1,4,2]dioxaphospholane 2-diethylamino-2,2-difluoro-4,4,5,5-tetrakis-trifluoromethyl-2λ5-[1,3,2]dioxaphospholane 2-diallylamino-2,2-difluoro-4,4,5,5-tetrakis-trifluoromethyl-2λ5-[1,3,2]dioxaphospholane 2-Methyl-4,4,5,5-tetrakis-trifluoromethyl-2,2-bis-(2,2,2-trifluoro-1-trifluoromethyl-ethoxy)-2λ5-[1,3,2]dioxaphospholane