摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-(But-3-enyl-methyl-phenylsilyl)-3-methylbutan-1-amine | 202743-86-0

中文名称
——
中文别名
——
英文名称
1-(But-3-enyl-methyl-phenylsilyl)-3-methylbutan-1-amine
英文别名
——
1-(But-3-enyl-methyl-phenylsilyl)-3-methylbutan-1-amine化学式
CAS
202743-86-0
化学式
C16H27NSi
mdl
——
分子量
261.483
InChiKey
NLPZDIKZWOEVGM-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.46
  • 重原子数:
    18
  • 可旋转键数:
    7
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    26
  • 氢给体数:
    1
  • 氢受体数:
    1

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    苯甲酰氯1-(But-3-enyl-methyl-phenylsilyl)-3-methylbutan-1-amine三乙胺 作用下, 以 二氯甲烷 为溶剂, 以2.6 g的产率得到N-[1-(3-butenyl(methyl)phenylsilyl)-3-methylbutyl] benzamide
    参考文献:
    名称:
    Silicon-Based Metalloprotease Inhibitors:  Synthesis and Evaluation of Silanol and Silanediol Peptide Analogues as Inhibitors of Angiotensin-Converting Enzyme1
    摘要:
    Silanols are best known as unstable precursors of siloxane (silicone) polymers, substances generally considered stable and inert, but have the potential to mimic a hydrated carbonyl and inhibit protease enzymes. While previous testing of simple silanediol and silanetriol species as inhibitors of hydrolase enzymes found them ineffective, this study reports polypeptide mimics with a central methylsilanol [SiMeOH] or silanediol [Si(OH)(2)] group and their assessment as effective transition state analogue inhibitors of the well-studied metalloprotease angiotensin-converting enzyme (ACE). Central to the synthesis strategy, phenylsilanes were employed as acid-hydrolyzable precursors of the silanol group. The N-benzoyl Leu[SiMeOH]-Gly benzyl amides proved to be stable and readily characterized. In contrast, the Leu-[Si(OH)(2)]Gly structure was difficult to characterize, possibly because of self-association. Capping the silanediol with chlorotrimethylsilane gave a well-defined trisiloxane, demonstrating that the silanediol was monomeric. The Leu-[Si]-Gly structures were converted to Leu-[Si]-Ala analogues by enolate alkylation. Coupling of the silanol precursors with proline tert-butyl ester gave N-benzoyl Leu-[Si]-Gly-Pro and N-benzoyl Leu[Si]-Ala-Pro tripeptide analogues. Treatment of these with triflic acid formed the corresponding methylsilanols and silanediols, all of which were monomeric. The silanediol tripeptide mimics inhibited ACE with IC50 values as low as 14 nM. Methylsilanols, in contrast, were poor inhibitors, with IC50 values above 3000 nM. These data, including comparisons with inhibition data from carbon analogues, are consistent with binding of the silanediols by chelation of the ACE active site zinc, whereas the methylsilanols ligate poorly.
    DOI:
    10.1021/ja026158w
  • 作为产物:
    描述:
    methyldifluorophenylsilane 在 lithium aluminium tetrahydride 、 正丁基锂 、 sodium azide 、 三乙胺 、 mercury dichloride 作用下, 以 四氢呋喃乙醚正己烷二氯甲烷N,N-二甲基甲酰胺甲苯乙腈 为溶剂, 反应 5.92h, 生成 1-(But-3-enyl-methyl-phenylsilyl)-3-methylbutan-1-amine
    参考文献:
    名称:
    Silicon-Based Metalloprotease Inhibitors:  Synthesis and Evaluation of Silanol and Silanediol Peptide Analogues as Inhibitors of Angiotensin-Converting Enzyme1
    摘要:
    Silanols are best known as unstable precursors of siloxane (silicone) polymers, substances generally considered stable and inert, but have the potential to mimic a hydrated carbonyl and inhibit protease enzymes. While previous testing of simple silanediol and silanetriol species as inhibitors of hydrolase enzymes found them ineffective, this study reports polypeptide mimics with a central methylsilanol [SiMeOH] or silanediol [Si(OH)(2)] group and their assessment as effective transition state analogue inhibitors of the well-studied metalloprotease angiotensin-converting enzyme (ACE). Central to the synthesis strategy, phenylsilanes were employed as acid-hydrolyzable precursors of the silanol group. The N-benzoyl Leu[SiMeOH]-Gly benzyl amides proved to be stable and readily characterized. In contrast, the Leu-[Si(OH)(2)]Gly structure was difficult to characterize, possibly because of self-association. Capping the silanediol with chlorotrimethylsilane gave a well-defined trisiloxane, demonstrating that the silanediol was monomeric. The Leu-[Si]-Gly structures were converted to Leu-[Si]-Ala analogues by enolate alkylation. Coupling of the silanol precursors with proline tert-butyl ester gave N-benzoyl Leu-[Si]-Gly-Pro and N-benzoyl Leu[Si]-Ala-Pro tripeptide analogues. Treatment of these with triflic acid formed the corresponding methylsilanols and silanediols, all of which were monomeric. The silanediol tripeptide mimics inhibited ACE with IC50 values as low as 14 nM. Methylsilanols, in contrast, were poor inhibitors, with IC50 values above 3000 nM. These data, including comparisons with inhibition data from carbon analogues, are consistent with binding of the silanediols by chelation of the ACE active site zinc, whereas the methylsilanols ligate poorly.
    DOI:
    10.1021/ja026158w
点击查看最新优质反应信息

文献信息

  • Silicon-Based Metalloprotease Inhibitors:  Synthesis and Evaluation of Silanol and Silanediol Peptide Analogues as Inhibitors of Angiotensin-Converting Enzyme<sup>1</sup>
    作者:Mwangi wa Mutahi、Thomas Nittoli、Luxuan Guo、Scott McN. Sieburth
    DOI:10.1021/ja026158w
    日期:2002.6.1
    Silanols are best known as unstable precursors of siloxane (silicone) polymers, substances generally considered stable and inert, but have the potential to mimic a hydrated carbonyl and inhibit protease enzymes. While previous testing of simple silanediol and silanetriol species as inhibitors of hydrolase enzymes found them ineffective, this study reports polypeptide mimics with a central methylsilanol [SiMeOH] or silanediol [Si(OH)(2)] group and their assessment as effective transition state analogue inhibitors of the well-studied metalloprotease angiotensin-converting enzyme (ACE). Central to the synthesis strategy, phenylsilanes were employed as acid-hydrolyzable precursors of the silanol group. The N-benzoyl Leu[SiMeOH]-Gly benzyl amides proved to be stable and readily characterized. In contrast, the Leu-[Si(OH)(2)]Gly structure was difficult to characterize, possibly because of self-association. Capping the silanediol with chlorotrimethylsilane gave a well-defined trisiloxane, demonstrating that the silanediol was monomeric. The Leu-[Si]-Gly structures were converted to Leu-[Si]-Ala analogues by enolate alkylation. Coupling of the silanol precursors with proline tert-butyl ester gave N-benzoyl Leu-[Si]-Gly-Pro and N-benzoyl Leu[Si]-Ala-Pro tripeptide analogues. Treatment of these with triflic acid formed the corresponding methylsilanols and silanediols, all of which were monomeric. The silanediol tripeptide mimics inhibited ACE with IC50 values as low as 14 nM. Methylsilanols, in contrast, were poor inhibitors, with IC50 values above 3000 nM. These data, including comparisons with inhibition data from carbon analogues, are consistent with binding of the silanediols by chelation of the ACE active site zinc, whereas the methylsilanols ligate poorly.
查看更多

同类化合物

(2-溴乙氧基)-特丁基二甲基硅烷 骨化醇杂质DCP 马来酸双(三甲硅烷)酯 顺式-二氯二(二甲基硒醚)铂(II) 顺-N-(1-(2-乙氧基乙基)-3-甲基-4-哌啶基)-N-苯基苯酰胺 降钙素杂质13 降冰片烯基乙基三甲氧基硅烷 降冰片烯基乙基-POSS 间-氨基苯基三甲氧基硅烷 镁,氯[[二甲基(1-甲基乙氧基)甲硅烷基]甲基]- 锑,二溴三丁基- 铷,[三(三甲基甲硅烷基)甲基]- 铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷 钾(4-{[二甲基(2-甲基-2-丙基)硅烷基]氧基}-1-丁炔-1-基)(三氟)硼酸酯(1-) 金刚烷基乙基三氯硅烷 辛醛,8-[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]- 辛甲基-1,4-二氧杂-2,3,5,6-四硅杂环己烷 辛基铵甲烷砷酸盐 辛基衍生化硅胶(C8)ZORBAX?LP100/40C8 辛基硅三醇 辛基甲基二乙氧基硅烷 辛基三甲氧基硅烷 辛基三氯硅烷 辛基(三苯基)硅烷 辛乙基三硅氧烷 路易氏剂-3 路易氏剂-2 路易士剂 试剂3-[Tris(trimethylsiloxy)silyl]propylvinylcarbamate 试剂2-(Trimethylsilyl)cyclopent-2-en-1-one 试剂11-Azidoundecyltriethoxysilane 西甲硅油杂质14 衣康酸二(三甲基硅基)酯 苯胺,4-[2-(三乙氧基甲硅烷基)乙基]- 苯磺酸,羟基-,盐,单钠聚合甲醛,1,3,5-三嗪-2,4,6-三胺和脲 苯甲醇,a-[(三苯代甲硅烷基)甲基]- 苯基二甲基氯硅烷 苯基二甲基乙氧基硅 苯基乙酰氧基三甲基硅烷 苯基三辛基硅烷 苯基三甲氧基硅烷 苯基三乙氧基硅烷 苯基三丁酮肟基硅烷 苯基三(异丙烯氧基)硅烷 苯基三(2,2,2-三氟乙氧基)硅烷 苯基(3-氯丙基)二氯硅烷 苯基(1-哌啶基)甲硫酮 苯乙基三苯基硅烷 苯丙基乙基聚甲基硅氧烷 苯-1,3,5-三基三(三甲基硅烷)