A ruthenium-catalyzed C–H alkenylation of aroylsilanes with electron-deficient alkenes was developed, using acylsilane as the directing group. The mild reaction conditions enable the tolerance of a wide scope of functionalities such as OMe, F, Cl, Br and CF3, providing a convenient and highly effective method for the synthesis of styrene derivatives bearing acylsilane. Steroid and heterocycles such
Visible-Light-Induced Catalyst-Free Carboxylation of Acylsilanes with Carbon Dioxide
作者:Zhengning Fan、Yaping Yi、Shenhao Chen、Chanjuan Xi
DOI:10.1021/acs.orglett.1c00435
日期:2021.3.19
Intermolecular carbon–carbon bond formation between acylsilanes and carbondioxide (CO2) was achieved by photoirradiation under catalyst-free conditions. In this reaction, siloxycarbenes generated by photoisomerization of the acylsilanes added to the C═O bond of CO2 to give α-ketocarboxylates, which underwent hydrolysis to afford α-ketocarboxylic derivatives in good yields. Control experiments suggest
Reversed-Polarity Synthesis of Diaryl Ketones via Palladium-Catalyzed Cross-Coupling of Acylsilanes
作者:Jason R. Schmink、Shane W. Krska
DOI:10.1021/ja2064318
日期:2011.12.14
Acylsilanes serve as acylanion equivalents in a palladium-catalyzed cross-coupling reaction with aryl bromides to give unsymmetrical diaryl ketones. Water plays a unique and crucial activating role in these reactions. High-throughput experimentation techniques provided successful reaction conditions initially involving phosphites as ligands. Ultimately, 1,3,5,7-tetramethyl-6-phenyl-2,4,8-trioxa-6-phosphaadamantane
Photochemical Intermolecular Silylacylations of Electron-Deficient Internal Alkynes
作者:Peter Becker、Daniel L. Priebbenow、Hui-Jun Zhang、Ramona Pirwerdjan、Carsten Bolm
DOI:10.1021/jo402457x
日期:2014.1.17
Light-induced Brook rearrangements of acylsilanes facilitate silylacylation reactions of electron-deficient internal alkynes. A wide range of aromatic substituents on the acylsilane aryl group are tolerated, affording a series of functionalized enonyl silanes. The presence of electron-withdrawing substituents on the alkyne is crucial for the success of the addition process.
gold(I)‐catalyzed synthesis of indanones from trimethylsilylacetylenes and acylsilanes is presented. The reaction is initiated through a synergistic acylsilane activation–gold acetylide formation and involves consecutive alkyne σ‐gold(I) addition, π‐activation, and 1,2‐migration of a silyl group. Studies performed on the reaction mechanism allowed to establish the nature of the silyl migrating group and invoke the