摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

gamma-光秋水仙碱 | 6901-14-0

中文名称
gamma-光秋水仙碱
中文别名
GAMMA-光华秋水仙碱
英文名称
β-lumicolchicine
英文别名
γ-Lumicolchicine;gamma-lumicolchicine;(-)-γ-lumicolchicine;(7bS)-7c-Acetylamino-1,2,3,9-tetramethoxy-(7br,10ac)-6,7,7b,10a-tetrahydro-5H-benzo[a]cyclopenta[3,4]cyclobuta[1,2-c]cyclohepten-8-on;(-)-γ-Lumicolchicin;(7S-(7α,7bα,10aα))-N-(5,6,7,7b,8,10a-hexahydro-1,2,3,9-tetramethoxy-8-oxobenzo[a]cyclopenta[3,4]cyclobuta[1,2-c]cyclohepten-7-yl)acetamide;beta-Lumicolchicine;N-[(10S,12S,16R)-3,4,5,14-tetramethoxy-13-oxo-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl]acetamide
gamma-光秋水仙碱化学式
CAS
6901-14-0
化学式
C22H25NO6
mdl
——
分子量
399.444
InChiKey
VKPVZFOUXUQJMW-LXIYXOSZSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    268°C
  • 沸点:
    623.2±55.0 °C(Predicted)
  • 密度:
    1.30±0.1 g/cm3(Predicted)
  • 溶解度:
    氯仿(微溶)、甲醇(微溶、加热)

计算性质

  • 辛醇/水分配系数(LogP):
    1.3
  • 重原子数:
    29
  • 可旋转键数:
    5
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.454
  • 拓扑面积:
    83.1
  • 氢给体数:
    1
  • 氢受体数:
    6

安全信息

  • 危险品标志:
    Xn
  • 危险类别码:
    R22
  • WGK Germany:
    3

SDS

SDS:0b45f6cdcbd20c058d8b6d714dffb49a
查看

制备方法与用途

秋水仙碱,又称秋水仙素,是从植物秋水仙中提取的一种生物碱。它能抑制纺锤丝的形成,从而延迟着丝粒的分裂,进而将有丝分裂细胞阻断于中期相,也能阻断减数分裂过程。在农业上,利用秋水仙碱这一特性可以培育出多倍体新品种。此外,在进行染色体分析时,常使用秋水仙碱处理样本以获得更多的中期相细胞供研究之用。它还被用作抗肿瘤药物。γ-光秋水仙碱是秋水仙碱的代谢产物。

反应信息

  • 作为反应物:
    描述:
    gamma-光秋水仙碱甲醇 、 sodium tetrahydroborate 作用下, 生成 Dihydro-γ-lumicolchicin
    参考文献:
    名称:
    秋水仙碱和相关化合物。第十四部分。β-和γ- lumicolchicine的结构
    摘要:
    DOI:
    10.1039/jr9550003864
  • 作为产物:
    描述:
    秋水仙碱碳酸氢钠 、 sodium carbonate 作用下, 以 为溶剂, 生成 gamma-光秋水仙碱β-Lumi (-)-秋水仙碱
    参考文献:
    名称:
    秋水仙碱向 Lumicolchicines 的光化学转化是否涉及三重态瞬变?溶剂依赖性研究¶
    摘要:
    摘要 β-和γ-发光秋水仙碱是秋水仙碱(COL)生物碱的托酚酮环环化异构化形成的光产物。通过研究溶剂极性对 lumicolchicine 光异构体比率的影响,研究了光转化的机制,建议涉及三重态。通过激光闪光光解检测到的三重 COL 被氧气淬灭,但不被反式二苯乙烯或 1-甲基萘。COL 转化的量子产率和光产物比率都不会因氧的存在而改变。同样,能量从异丁醛/辣根过氧化物酶系统或四甲基二氧杂环丁烷热解产生的三线态丙酮转移到 COL 未能激发 COL 的光反应。
    DOI:
    10.1562/0031-8655(2001)073<0213:dtpcoc>2.0.co;2
点击查看最新优质反应信息

文献信息

  • Colchicine drug-to-drug interactions
    申请人:RxOMEG Therapeutics LLC
    公开号:US10226423B1
    公开(公告)日:2019-03-12
    The use of oral colchicine solutions in combination with other therapeutics, while minimizing toxic drug to drug interactions are described herein. Related compositions are also provided.
    本文介绍了秋水仙碱口服溶液与其他治疗药物的联合使用,同时最大限度地减少了药物之间的毒性相互作用。还提供了相关的组合物。
  • Photochemical Isomerization of Colchicine and Thiocolchicine
    作者:Laura Bussotti、Ivo Cacelli、Maurizio D'Auria、Paolo Foggi、Giordano Lesma、Alessandra Silvani、Vincenzo Villani
    DOI:10.1021/jp035507l
    日期:2003.10.1
    The photochemical reactivity of colchicine and thiocolchicine is described. Although the irradiation of colchicine gave a well-known transposition reaction to beta- and gamma-lumicolchicines, thiocolchicine did not react. Femtosecond transient spectroscopy of colchicine showed a strong band with maximum at 510 nm appearing at tau = 0. It disappeared within few hundred femtoseconds, leaving a broad structureless band with a maximum around 470 urn. A second band is observed around 410 nm. The analysis in time showed that the 510-nm component appeared instantaneously and decayed following a biexponential low with time constants of 300 +/- 100 fs and 40 ps. The kinetics at 420 nm has a measurable rise lime of 300 +/- 150 fs. Quantum mechanical calculations on colchicine showed that this absorption is due to a S-1 --> S-11 transition. In thiocolchicine, the instantaneous formation of a structure with maxima out of the investigated spectral region was observed. A strong absorption around 650 nm indicated the presence of a band with a maximum at longer wavelengths (> 700 nm) and a peak around 380 nm, which partially coincides with the ground-state absorption and therefore strongly affected absorption around 650 nm and its rapid (similar to500 fs) decay by its bleaching. The instantaneous formation of an absorption was observed. At shorter wavelengths (400 nm), the t decay was fitted with a biexponential curve with the first time constant of about 80 ps. The second part of,the decay had a very long tail up to 500 ps. Transient spectroscopy and configuration interaction calculations are in agreement with a mechanism involving a disrotatory cyclization of colchicine in its first excited singlet state. The lack of reactivity observed in thiocolchicine was explained by considering the presence of efficient ISC to the triplet state.
  • Grewe; Wulf, Chemische Berichte, 1951, vol. 84, p. 621,624, 625
    作者:Grewe、Wulf
    DOI:——
    日期:——
  • Santavy, Collection of Czechoslovak Chemical Communications, 1951, vol. 16/17, p. 665,667
    作者:Santavy
    DOI:——
    日期:——
  • Schenck et al., Tetrahedron Letters, 1961, p. 12
    作者:Schenck et al.
    DOI:——
    日期:——
查看更多

同类化合物

β-Lumi (-)-秋水仙碱 gamma-光秋水仙碱 N-[(7S)-5,6,7,7balpha,8,10aalpha-六氢-1,2,3,9-四甲氧基-8-氧代苯并[a]环戊二烯并[3,4]环丁[1,2-c]环庚烯-7-基]甲酰胺 Einecs 230-008-1 α-Lumicolchicin γ-Lumicolchicin β-Lumicolchicin N-[(10S,12R,16R)-3,4,5,14-tetramethoxy-13-oxo-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl]acetamide (2-hydroxyphenyl)methyl-methyl-[(10S,12R,16S)-3,4,5,14-tetramethoxy-13-oxo-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl]azanium (10S,12R,16S)-10-[(2-hydroxyphenyl)methyl-methylamino]-3,4,5,14-tetramethoxytetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaen-13-one N-[(10R,12S,14S,17R,18S)-3,4,5,14-tetramethoxy-15,15,16,16-tetramethyl-13-oxo-10-pentacyclo[9.7.0.02,7.012,18.014,17]octadeca-1(11),2,4,6-tetraenyl]acetamide N-[(10S,12S,16S)-3,4,5,14-tetramethoxy-13-oxo-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl]acetamide N-[(10R,12S,16S)-3,4,5,14-tetramethoxy-13-oxo-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl]acetamide N-[(10R,12R,14S,17R,18S)-3,4,5,14-tetramethoxy-15,15,16,16-tetramethyl-13-oxo-10-pentacyclo[9.7.0.02,7.012,18.014,17]octadeca-1(11),2,4,6-tetraenyl]acetamide N-[(10S,12S,14S,17R,18S)-3,4,5,14-tetramethoxy-15,15,16,16-tetramethyl-13-oxo-10-pentacyclo[9.7.0.02,7.012,18.014,17]octadeca-1(11),2,4,6-tetraenyl]acetamide N-[(10S,12R,14S,17R,18S)-3,4,5,14-tetramethoxy-15,15,16,16-tetramethyl-13-oxo-10-pentacyclo[9.7.0.02,7.012,18.014,17]octadeca-1(11),2,4,6-tetraenyl]acetamide N-[(12S,16R)-3,4,5,14-tetramethoxy-13-oxo-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl]acetamide (10R,12R,16S)-10-[(2-hydroxyphenyl)methyl-methylamino]-3,4,5,14-tetramethoxytetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaen-13-one (2-hydroxyphenyl)methyl-methyl-[(10R,12R,16S)-3,4,5,14-tetramethoxy-13-oxo-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl]azanium N-[(10R,12R,16S)-3,4,5,14-tetramethoxy-13-oxo-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl]acetamide N-(4-hydroxy-3,5,14-trimethoxy-13-oxo-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl)acetamide gamma-Lumicolchicine 10-[(2-Hydroxyphenyl)methyl-methylamino]-3,4,5,14-tetramethoxytetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaen-13-one N-methyl-N-[3,5,14-trimethoxy-13-oxo-4-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl]acetamide 3-oxo-N-(3,4,5,14-tetramethoxy-13-oxo-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl)butanamide N-methyl-N-[3,4,14-trimethoxy-13-oxo-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl]acetamide 3,4,5,14-Tetramethoxy-10-(methylamino)tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaen-13-one N-(5-hydroxy-3,4,14-trimethoxy-13-oxo-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl)formamide N-(5-hydroxy-3,4,14-trimethoxy-13-oxo-10-tetracyclo[9.5.0.02,7.012,16]hexadeca-1(11),2,4,6,14-pentaenyl)acetamide