Systematic study on the broad nucleotide triphosphate specificity of the pyrophosphorylase domain of the N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli K12
摘要:
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) from Escherichia coli K12 is a bifunctional enzyme that catalyzes both the acetyltransfer and uridyltransfer reactions in the prokaryotic UDP-GlcNAc biosynthetic pathway. In this study, we report the broad substrate specificity of the pyrophosphorylase domain of GlmU during its uridyltransfer reaction and the substrate priority is ranked in the following order: UTP > dUTP > dTTP >> CTP > dATP/dm(6) ATP. This pyrophosphorylase domain of GlmU is also a tool to synthesize UDP-GlcNAc analogs, two examples of which were synthesized herein in multiple mg scale in vitro. (C) 2009 Elsevier Ltd. All rights reserved.
Systematic study on the broad nucleotide triphosphate specificity of the pyrophosphorylase domain of the N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli K12
作者:Junqiang Fang、Wanyi Guan、Li Cai、Guofeng Gu、Xianwei Liu、Peng George Wang
DOI:10.1016/j.bmcl.2009.09.039
日期:2009.11
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) from Escherichia coli K12 is a bifunctional enzyme that catalyzes both the acetyltransfer and uridyltransfer reactions in the prokaryotic UDP-GlcNAc biosynthetic pathway. In this study, we report the broad substrate specificity of the pyrophosphorylase domain of GlmU during its uridyltransfer reaction and the substrate priority is ranked in the following order: UTP > dUTP > dTTP >> CTP > dATP/dm(6) ATP. This pyrophosphorylase domain of GlmU is also a tool to synthesize UDP-GlcNAc analogs, two examples of which were synthesized herein in multiple mg scale in vitro. (C) 2009 Elsevier Ltd. All rights reserved.
Exploiting Nucleotidylyltransferases To Prepare Sugar Nucleotides
作者:Shannon C. Timmons、Roy H. Mosher、Sheryl A. Knowles、David L. Jakeman
DOI:10.1021/ol0630853
日期:2007.3.1
Enzymatic approaches to prepare sugar nucleotides are gaining in importance and offer several advantages over chemical synthesis including high yields and stereospecificity. We report the cloning, expression, and purification of two new wild-type thymidylyltransferases and observed catalysis with a wide variety of substrates. Significant product inhibition was not observed with the enzymes studied over a 24 h period, enabling the efficient preparation of 15 sugar nucleotides, clearly demonstrating the synthetic utility of these biocatalysts.
Probing the roles of conserved residues in uridyltransferase domain of Escherichia coli K12 GlmU by site-directed mutagenesis
作者:Shuaishuai Wang、Xuan Fu、Yunpeng Liu、Xian-wei Liu、Lin Wang、Junqiang Fang、Peng George Wang
DOI:10.1016/j.carres.2015.05.007
日期:2015.9
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a bifunctional enzyme that catalyzes both acetyltransfer and uridyltransfer reactions in the prokaryotic UDP-GlcNAc biosynthesis pathway. Our previous study demonstrated that the uridyltransferase domain of GlmU (tGlmU) exhibited a flexible substrate specificity, which could be further applied in unnatural sugar nucleotides preparation. However, the structural basis of tolerating variant substrates is still not clear. Herein, we further investigated the roles of several highly conserved amino acid residues involved in substrate binding and recognition by structure-and sequence-guided site-directed mutagenesis. Out of total 16 mutants designed, tGlmU Q76E mutant which had a novel catalytic activity to convert CTP and GlcNAc-1P into unnatural sugar nucleotide CDP-GlcNAc was identified. Furthermore, tGlmU Y103F and N169R mutants were also investigated to have enhanced uridyltransferase activities compared with wide-type tGlmU. (C) 2015 Elsevier Ltd. All rights reserved.
A chemoenzymatic route to synthesize unnatural sugar nucleotides using a novel N-acetylglucosamine-1-phosphate pyrophosphorylase from Camphylobacter jejuni NCTC 11168
作者:Junqiang Fang、Mengyang Xue、Guofeng Gu、Xian-wei Liu、Peng George Wang
DOI:10.1016/j.bmcl.2013.06.003
日期:2013.8
A novel N-acetylglucosamine-1-phosphate pyrophosphorylase was identified from Campylobacter jejuni NCTC 11168. An unprecedented degree of substrate promiscuity has been revealed by systematic studies on its substrate specificities towards sugar-1-P and NTP. The yields of the synthetic reaction of seven kinds of sugar nucleotides catalyzed by the enzyme were up to 60%. In addition, the yields of the other nine were around 20%. With this enzyme, three novel sugar nucleotide analogs were synthesized on a preparative scale and well characterized. (C) 2013 Elsevier Ltd. All rights reserved.