摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

乙氧基毒鼠硅 | 3463-21-6

中文名称
乙氧基毒鼠硅
中文别名
——
英文名称
1-ethoxysilatrane
英文别名
ethoxysilatrane;2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecane, 1-ethoxy-;1-ethoxy-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane
乙氧基毒鼠硅化学式
CAS
3463-21-6
化学式
C8H17NO4Si
mdl
MFCD00053825
分子量
219.313
InChiKey
RAQAYUJGWWHPLN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    100°C
  • 沸点:
    180°C 0,6mm

计算性质

  • 辛醇/水分配系数(LogP):
    0.28
  • 重原子数:
    14
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    40.2
  • 氢给体数:
    0
  • 氢受体数:
    5

安全信息

  • 海关编码:
    2934999090

SDS

SDS:fc2ccecf136b22b597d8135798314850
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    乙氧基毒鼠硅苯甲酰氟 、 zinc(II) chloride 作用下, 以 xylene 为溶剂, 反应 20.0h, 以90%的产率得到1-fluorosilatrane
    参考文献:
    名称:
    New synthesis of 1-acyloxysilatranes and 1-fluorosilatrane
    摘要:
    DOI:
    10.1134/s1070363206120279
  • 作为产物:
    描述:
    硅酸四乙酯三乙醇胺 作用下, 以 为溶剂, 以73%的产率得到乙氧基毒鼠硅
    参考文献:
    名称:
    Silane: A new linker for chromophores in dye-sensitised solar cells
    摘要:
    A series of ruthenium(II) polypyridyl complexes, with novel silane functionalisation, [Ru(bipy)(2)(bipy-sil)] (PF6)(2) (3), [Ru(bipy-sil)(2)Cl-2] (6), and [Ru(bipy-sil)(2)(NCS)(2)] (7) have been synthesised and tested as chromophores (dyes) in TiO2 and WO3 based dye-sensitised solar cells (DSSCs). The performance of the respective DSSCs were compared to analogous dyes with ionic carboxylate ([Ru(bipy)(2)(dcbipy)](PF6)(2) (1), [Ru(dcbipy)(2)Cl-2] (4), [Ru(dcbipy)(2)(NCS)(2)] (5)) or phosphonate ([Ru(bipy)(2)(dpipy)](PF6)(2) (2)) linking groups. The covalent silane-metal oxide linkage offers much needed improvement to the operating conditions, and lifetime of DSSCs, in terms of pH range and choice of solvent. UV-Vis spectroscopy of the deep-red solutions showed that the bis-bipy-sil complexes absorbed more visible light than the tris-bipy complex, as indicated by the presence of two absorption bands and higher E values. The UV-Vis spectrum of (3) contained a single broad absorption at 400-600 nm with: lambda(max) = 457 nm; epsilon = 10520 +/- 440 L mol(-1) cm(-1), whereas two intense broad absorption bands were observed for novel bis-bipy-sil complexes (6): 340-370 nm (lambda(max(1)) = 365 nm, epsilon((1)) = 12716 +/- 180 L mol(-1) cm(-1)); and 440-540 nm (lambda(max(2)) = 485 nm, epsilon((2)) = 11070 +/- 150 L mol(-1) cm(-1)), and (7): 340-400 nm (lambda(max) = 371 nm epsilon((1)) = 20690 +/- 485 L mol(-1) cm(-1)), and 460-530 nm (lambda(max) = 500 nm and epsilon((2)) = 20750 +/- 487 L mol(-1) cm(-1)). The bands in (7) being significantly more defined.A 10-fold improvement in the efficiency of the bipy-sil TiO2-based DSSCs was observed from (3) to (6) to (7). This performance was lower than that of the commercial N3 dye, [Ru(dcbipy)(2)(NCS)(2)] (5), but the current of (7) on WO3, was comparable to that of the carboxylate system (4). There is considerable potential for further improvement by modification of the silyl linker, reducing the long non-conjugated propyl chain between the amide group and the silatrane (bipy-sil), to a short, conjugated link. During an extensive synthetic study, the most promising strategy was identified as direct linkage, the formation of a direct Si-C bond, using butyllithium with 4,4'-dibromo-2,2'-bipyridine and either trimethylsilane or 1-ethoxysilatrane, provided that the product can be captured and stabilised prior to binding to a metal oxide coated DSSC substrate. (C) 2012 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.poly.2012.07.078
点击查看最新优质反应信息

文献信息

  • 1-Halosilatranes
    作者:M.G. Voronkov、V.P. Baryshok、L.P. Petukhov、V.I. Rakhlin、R.G. Mirskov、V.A. Pestunovich
    DOI:10.1016/0022-328x(88)87069-4
    日期:1988.12
    1-halosilatranes is discussed. Some new preparative methods based on hetero- and homo-lytic reactions of the silatrane and the Si- and C-substituted silatranes with halogenating reagents are described and also synthetic routes to 1-halosilatranes from certain organotrialkoxy- and organotrichlorosilanes. The electrophilic reactions of 1-iodosilatrane with ethers and esters, carbonyl compounds, alkoxysilanes and siloxanes
    讨论了1-卤代硅烷基酯的电子结构。描述了一些新的制备方法,这些方法基于硅烷基烃以及被硅和碳取代的硅烷基与卤化试剂的异溶和均溶反应,还描述了从某些有机三烷氧基和有机三氯硅烷合成1-卤代硅烷基的方法。已经研究了1-碘硅杂环丁烷与醚和酯,羰基化合物,烷氧基硅烷和硅氧烷,末端炔烃和有机汞的亲电反应。
  • Activator-Free Palladium-Catalyzed Silylation of Aryl Chlorides with Silylsilatranes
    作者:Yutaro Yamamoto、Hiroshi Matsubara、Kei Murakami、Hideki Yorimitsu、Atsuhiro Osuka
    DOI:10.1002/asia.201402595
    日期:2015.1
    The palladium‐catalyzed silylation of aryl chlorides with silylsilatranes proceeds under activator‐free conditions; hence, wide functional group compatibility is displayed and boryl and siloxy groups are able to survive. Experimental and computational studies revealed that smooth transmetalation from the silylsilatrane to the arylpalladium chloride is facilitated by strong interaction between the Lewis
    在无活化剂的条件下,钯催化的芳基氯与甲硅烷基硅烷基化的甲硅烷基化反应得以进行。因此,显示出广泛的官能团相容性,并且硼烷基和甲硅烷氧基能够存活。实验和计算研究表明,路易斯酸性硅与氯化物之间的强相互作用促进了从甲硅烷基硅石到芳基钯氯化物的平滑过渡金属化。
  • A New Route to Silicon Alkoxides from Silica
    作者:Tim Kemmitt、William Henderson
    DOI:10.1071/c98060
    日期:——

    A novel route to tetraethoxysilane and other silicon alkoxides is described, from amorphous silica (SiO2.nH2O) as the raw material. The reaction of amorphous silica with triethanolamine is enhanced by using an alkali metal hydroxide catalyst, to form a range of triethanolamine-substituted silatrane species. These can undergo alkoxide exchange in acidic alcohols to form alkoxysilatranes, tetraalkoxysilanes, hexaalkoxydisiloxanes and higher siloxanes. Reaction of triethanolamine-substituted silatranes with acetic anhydride produces acetoxysilatrane. Products were identified by multinuclear (1H, 13C and 29Si) magnetic resonance spectroscopy, electrospray mass spectrometry or high-resolution gas chromatography electron impact mass spectrometry.

    描述了一种获得四乙氧基硅烷和其他硅烷氧基化合物的新方法、 从无定形二氧化硅 (SiO2.nH2O) 为原料。无定形二氧化硅与三乙醇胺的反应 通过使用碱金属氢氧化物催化剂,增强了无定形二氧化硅与三乙醇胺的反应,形成一系列 三乙醇胺取代的硅烷。这些物质可在酸性醇中进行 交换,形成烷氧基硅烷、四烷氧基硅烷、 六烷氧基二硅氧烷和高级硅氧烷。反应 三乙醇胺取代的硅烷与乙酸酐反应生成 乙酰氧基硅烷。通过多核 (1H、13C 和 29Si)磁共振光谱法、电喷雾质谱法或高分辨 质谱法或高分辨率气相色谱电子碰撞质谱法鉴定。 质谱法进行鉴定。
  • Si-C-Bond cleavage in 1-organylsilatranes by bromine or iodine chloride
    作者:M. G. Voronkov、V. P. Baryshok、N. F. Lazareva
    DOI:10.1007/bf01457789
    日期:1996.8
    The Si-C bond in I-organylsilatranes is cleaved by bromine or iodine chloride to yield 1-bromo- or 1-chlorosilatrane respectively. In the presence of Et2O or THF and under the action of dioxane dibromide, I-halosilatrane
    I-有机基硅烷中的 Si-C 键被溴或氯化碘裂解,分别生成 1-溴或 1-氯硅烷。在 Et2O 或 THF 存在下,在二溴化二恶烷的作用下,I-卤代硅油
  • Synthesis of cyclic carbonates of different epoxides using CO2 as a C1 building block over Ag/TUD-1 mesoporous silica catalyst: A solvent free approach
    作者:Kumer Saurav Keshri、Sudip Bhattacharjee、Aniruddha Singha、Asim Bhaumik、Biswajit Chowdhury
    DOI:10.1016/j.mcat.2022.112234
    日期:2022.4
    abandoned CO2 that is generated from fossil fuels and industrial sources into valuable chemicals is a smart approach for a greener future. The fixation of CO2 over epoxides and the production of cyclic carbonates is one of the popular CO2 utilization techniques. Silica supported silver nanoparticles have been used before in different important reactions like nitrophenol reduction, alcohol oxidation etc.,
    将化石燃料和工业来源产生的废弃 CO 2用于有价值的化学品是实现更环保未来的明智方法。CO 2在环氧化物上的固定和环状碳酸酯的生产是流行的CO 2利用技术之一。由于二氧化硅的高表面积、孔径和 Ag 0物种的高活性,二氧化硅负载的银纳米粒子以前已用于不同的重要反应,如硝基苯酚还原、醇氧化等。在这项研究中,Technische Universiteit Delft -1 (TUD-1) 用作二氧化硅载体以稳定银纳米颗粒和 CO 2已在无溶剂条件下转化为环状碳酸酯。银颗粒的路易斯酸性有助于无溶剂的 CO 2转化,从而在 60 °C 和 1 MPa 压力下实现 98% 的最大产率。
查看更多

同类化合物

(2-溴乙氧基)-特丁基二甲基硅烷 骨化醇杂质DCP 马来酸双(三甲硅烷)酯 顺式-二氯二(二甲基硒醚)铂(II) 顺-N-(1-(2-乙氧基乙基)-3-甲基-4-哌啶基)-N-苯基苯酰胺 降钙素杂质13 降冰片烯基乙基三甲氧基硅烷 降冰片烯基乙基-POSS 间-氨基苯基三甲氧基硅烷 镁,氯[[二甲基(1-甲基乙氧基)甲硅烷基]甲基]- 锑,二溴三丁基- 铷,[三(三甲基甲硅烷基)甲基]- 铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷 钾(4-{[二甲基(2-甲基-2-丙基)硅烷基]氧基}-1-丁炔-1-基)(三氟)硼酸酯(1-) 金刚烷基乙基三氯硅烷 辛醛,8-[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]- 辛甲基-1,4-二氧杂-2,3,5,6-四硅杂环己烷 辛基铵甲烷砷酸盐 辛基衍生化硅胶(C8)ZORBAX?LP100/40C8 辛基硅三醇 辛基甲基二乙氧基硅烷 辛基三甲氧基硅烷 辛基三氯硅烷 辛基(三苯基)硅烷 辛乙基三硅氧烷 路易氏剂-3 路易氏剂-2 路易士剂 试剂3-[Tris(trimethylsiloxy)silyl]propylvinylcarbamate 试剂2-(Trimethylsilyl)cyclopent-2-en-1-one 试剂11-Azidoundecyltriethoxysilane 西甲硅油杂质14 衣康酸二(三甲基硅基)酯 苯胺,4-[2-(三乙氧基甲硅烷基)乙基]- 苯磺酸,羟基-,盐,单钠聚合甲醛,1,3,5-三嗪-2,4,6-三胺和脲 苯甲醇,a-[(三苯代甲硅烷基)甲基]- 苯基二甲基氯硅烷 苯基二甲基乙氧基硅 苯基乙酰氧基三甲基硅烷 苯基三辛基硅烷 苯基三甲氧基硅烷 苯基三乙氧基硅烷 苯基三丁酮肟基硅烷 苯基三(异丙烯氧基)硅烷 苯基三(2,2,2-三氟乙氧基)硅烷 苯基(3-氯丙基)二氯硅烷 苯基(1-哌啶基)甲硫酮 苯乙基三苯基硅烷 苯丙基乙基聚甲基硅氧烷 苯-1,3,5-三基三(三甲基硅烷)