摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(1S,3S,6R,10S)-(Z)-9-(3,4-dichlorobenzylidene)-10-(E-styryl)-7-azatricyclo[3.2.1.03,7]decane

中文名称
——
中文别名
——
英文名称
(1S,3S,6R,10S)-(Z)-9-(3,4-dichlorobenzylidene)-10-(E-styryl)-7-azatricyclo[3.2.1.03,7]decane
英文别名
(1S,2S,3R,6S,9Z)-9-[(3,4-dichlorophenyl)methylidene]-2-[(E)-2-phenylethenyl]-7-azatricyclo[4.3.1.03,7]decane
(1S,3S,6R,10S)-(Z)-9-(3,4-dichlorobenzylidene)-10-(E-styryl)-7-azatricyclo[3.2.1.0<sup>3,7</sup>]decane化学式
CAS
——
化学式
C24H23Cl2N
mdl
——
分子量
396.359
InChiKey
RFQGECOOEGPNDP-QHZODLNISA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.3
  • 重原子数:
    27
  • 可旋转键数:
    3
  • 环数:
    6.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    3.2
  • 氢给体数:
    0
  • 氢受体数:
    1

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    参考文献:
    名称:
    Further Studies on Conformationally Constrained Tricyclic Tropane Analogues and Their Uptake Inhibition at Monoamine Transporter Sites:  Synthesis of (Z)-9-(Substituted arylmethylene)-7-azatricyclo[4.3.1.03,7]decanes as a Novel Class of Serotonin Transporter Inhibitors
    摘要:
    A novel series of conformationally constrained tricyclic tropane analogues, (Z)-9-(substituted arylmethylene)-7-azatricyclo [4.3.1.0(3,7)] decanes, were prepared, and their abilities to inhibit high-affinity uptake of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) into rat brain nerve endings (synaptosomes) were evaluated. First, a systematic screening of a variety of different substituents on the phenyl ring indicated that the substitution pattern plays an important role in the monoamine transporter activity. Most compounds in this series possessed a very low activity at the DA transporter (DAT) but a good to excellent affinity for the 5-HT transporter (SERT). In the case of para-substituted phenyl analogues, the electronic character of the substituent did not affect uptake inhibition as dramatically as observed in some benztropine analogues. Among these compounds, the 4-bromophenyl and 4-isopropylphenyl analogues 8d and 8j exhibited the highest potency at the SERT with a K-i value of 10 nM. In the 3,4-disubstituted phenyl series, even more potent and highly selective compounds were discovered. Compound So has a K-i value of 2.3 nM for uptake inhibition at the SERT, a DAT/SERT uptake ratio of 2360, and a NET/SERT uptake ratio of 200. Compound 8p exhibited a Ki value of 1.8 nM for uptake inhibition at the SERT, a DAT/SERT uptake ratio of 1740, and a NET/SERT uptake ratio of 151. These compounds are 3-4-fold more potent than the antidepressant medication fluoxetine, and the selectivities for SERT over DAT and NET are also better than those of fluoxetine. Second, a variety of functional modifications on the ester moiety were investigated. Substitution by other esters or amides as well as alkenes did not increase potency, while most of the acetates or benzoates (16-21, 23, and 24) and the ketone 28 exhibited significantly improved activity. A good hydrogen-bonding ability of the substituent is believed to be required for high activity. The most potent and selective ligand is compound 23, which displayed a K-i value of 0.06 nM and has essentially no activity at the DAT or NET. The present results have important implications for drug addiction as well as a number of psychiatric diseases.
    DOI:
    10.1021/jm0105373
点击查看最新优质反应信息

文献信息

  • Further Studies on Conformationally Constrained Tricyclic Tropane Analogues and Their Uptake Inhibition at Monoamine Transporter Sites:  Synthesis of (<i>Z</i>)-9-(Substituted arylmethylene)-7-azatricyclo[4.3.1.0<sup>3,7</sup>]decanes as a Novel Class of Serotonin Transporter Inhibitors
    作者:Ao Zhang、Guochun Zhou、Alexander Hoepping、Jayanta Mukhopadhyaya、Kenneth M. Johnson、Mei Zhang、Alan P. Kozikowski
    DOI:10.1021/jm0105373
    日期:2002.4.1
    A novel series of conformationally constrained tricyclic tropane analogues, (Z)-9-(substituted arylmethylene)-7-azatricyclo [4.3.1.0(3,7)] decanes, were prepared, and their abilities to inhibit high-affinity uptake of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) into rat brain nerve endings (synaptosomes) were evaluated. First, a systematic screening of a variety of different substituents on the phenyl ring indicated that the substitution pattern plays an important role in the monoamine transporter activity. Most compounds in this series possessed a very low activity at the DA transporter (DAT) but a good to excellent affinity for the 5-HT transporter (SERT). In the case of para-substituted phenyl analogues, the electronic character of the substituent did not affect uptake inhibition as dramatically as observed in some benztropine analogues. Among these compounds, the 4-bromophenyl and 4-isopropylphenyl analogues 8d and 8j exhibited the highest potency at the SERT with a K-i value of 10 nM. In the 3,4-disubstituted phenyl series, even more potent and highly selective compounds were discovered. Compound So has a K-i value of 2.3 nM for uptake inhibition at the SERT, a DAT/SERT uptake ratio of 2360, and a NET/SERT uptake ratio of 200. Compound 8p exhibited a Ki value of 1.8 nM for uptake inhibition at the SERT, a DAT/SERT uptake ratio of 1740, and a NET/SERT uptake ratio of 151. These compounds are 3-4-fold more potent than the antidepressant medication fluoxetine, and the selectivities for SERT over DAT and NET are also better than those of fluoxetine. Second, a variety of functional modifications on the ester moiety were investigated. Substitution by other esters or amides as well as alkenes did not increase potency, while most of the acetates or benzoates (16-21, 23, and 24) and the ketone 28 exhibited significantly improved activity. A good hydrogen-bonding ability of the substituent is believed to be required for high activity. The most potent and selective ligand is compound 23, which displayed a K-i value of 0.06 nM and has essentially no activity at the DAT or NET. The present results have important implications for drug addiction as well as a number of psychiatric diseases.
查看更多

同类化合物

长春内日啶 钩藤碱e 钩藤碱d 钩藤碱A 钩藤碱 C 钩藤碱 虎皮楠生物碱B 甲基二氯镓 流涎胺 栗精胺 柯诺辛B 柯诺辛 恩卡林碱 F 异钩藤碱 异帽叶碱 异去氢钩藤碱 帽柱叶碱 四氢-吲哚嗪-1,3-二酮 去氢钩藤碱 卡拉巴宾 六氢吲嗪-8-酮 六氢吲哚嗪-3,7-二酮 六氢-5(1H)-吲嗪硫酮 六氢-3(2H)-吲嗪硫酮 八氢吲嗪 八氢-6,7-吲嗪二醇 八倾吲嗪三醇 二环[2.2.1]庚烷-2-醇,3-(二甲氨基)-,[1S-(内,内)]-(9CI) 丙酸,2,2-二甲基-,八氢-7,8-二羟基-1,6-中氮茚二基酯,1S-(1.α.,6.β.,7.α.,8.β.,8a.β.)- 一叶萩碱 一叶秋碱 α.-塔洛-九吡喃糖,1,6:2,3-二脱水-4,7,8,9-四脱氧- [(1S,6S,7S,8R,8aR)-1,7,8-三羟基-1,2,3,5,6,7,8,8a-八氢吲嗪-6-基] 丁酸酯 N-[(1S,6S,7R,8R,8aR)-1,7,8-三羟基辛氢-6-吲哚嗪基]乙酰胺 8a-乙炔基-2,3,5,6,7,8-六氢-1H-吲嗪 8-氨基-3-氧代八氢-1-吲嗪羧酸 8-中氮茚醇,八氢-1,6,7-三(苯基甲氧基)-,1S-(1.α.,6.β.,7.α.,8.β.,8a.β.)- 6,7-二羟基苦马豆素 5(1H)-中氮茚酮,六氢-,(R)- 4-氨基-1H-苯并咪唑-6-羧酸 2-甲基-5-氧代八氢-3-吲嗪甲醛 1-甲基八氢-1-吲哚嗪并l 1,7,8-中氮茚三醇,八氢-6-(1-甲基丙基)氨基- 1,6,7-中氮茚三醇,八氢-8-甲氧基-,1S-(1.α.,6.β.,7.α.,8.β.,8a.β.)- 1,2-异亚丙基苦马豆素 (八氢吲哚啉-8-基)-甲醇 (R)-12-羟基十八烷酸 (8aS)-六氢-5,8-吲嗪二酮 (6S,7R,8R,8aR)-1,2,3,5,6,7,8,8a-八氢吲嗪-6,7,8-三醇 (6R,8AS)-6-(8-氨基-1-溴咪唑并[1,5-A]吡嗪-3-基)六氢中氮-3(2H)-酮