The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries
摘要:
Monofluoropropylene carbonate (MFPC) and trifluoropropylene carbonate (TFPC) with a monofluoromethyl (or trifluoromethyl) replacing the methyl group in propylene carbonate (PC) as well as EC-CH2CH2Si(CH3)(2)OSi(CH3)(3) (Si-A) and EC-CH2CH2Si(CH3)(3) (Si-B) have been synthesized. The charge-discharge studies in a Li/MCMB (mesocarbon microbeads) cell using electrolyte containing these compounds show that the solid electrolyte interphase (SE!) formation capability of MFPC/DMC (dimethyl carbonate) and TFPC/DMC are about the same as ethylene carbonate (EC)/DMC, and TFPC/PC/DMC is better than that of EC/PC/DMC, while MFPC/PC/DMC is poorer than the EC/PC/DMC. The superior SEI formation capability of TFPC could be attributed to the strong electron withdrawing group of CF3, which promote the "ring opening" reaction. In contrast, the electron donating group CH3 in the PC structure may demote the "ring opening" and cause the poor SEI formation. The results of MFPC with weaker electron withdrawing group give further support of this hypothesis. The bi-solvent electrolytes of Si-A/DMC and Si-B/DMC have comparable SEI formation capability as EC/DMC and TFPC/DMC, regardless of their bulky chains. This indicates that if proper chain structures are used, good SEI formation capability could be obtained for cyclic carbonate with bulky chains. These new solvents provide valuable information in studying the SEI formation mechanism and designing new electrolytes. (C) 2010 Elsevier B.V. All rights reserved.
Structure-property relationship and transport properties of structurally related silyl carbonate electrolytes
作者:Manuela Philipp、Rajesh Bhandary、Florian J. Groche、Monika Schönhoff、Bernhard Rieger
DOI:10.1016/j.electacta.2015.05.108
日期:2015.8
Ten different substituted structurally related linear and cyclic carbonates were synthesized and investigated as electrolyte solvents for lithium-ion cells. Synthesis of the compounds, mainly silyl carbonates, was carried out via catalytic CO2 addition, nucleophilic substitution or hydrosilylation. Besides the ten synthesized compounds a binary mixture of a cyclic and linear silyl carbonate, propylene carbonate (PC), diethyl carbonate (DEC) and a binary mixture thereof were analyzed as a function of molar lithium ((bistrifluoromethyl) sulfonyl) imide LiTFSI ratio in order to develop a structure-property relationship. The extrapolation of the temperature-dependent ionic conductivities using Vogel-Tamman-Fulcher (VTF) equation revealed a solvent assisted ionic transport mechanism. The strength of interaction between the lithium-ion and the respective carbonates was investigated via C-13 and Si-29 NMR measurements by the change of the chemical shift upon LiTFSI addition. The results show that the interaction of the lithium ion with the cyclic carbonates is much stronger compared to the linear ones and varies among the different substituents. These findings were in good accordance with ionicities represented by the Walden product. The diffusivities of Li+ and TFSI were determined via Pulsed Field Gradient STimulated Echo (PGSTE)-NMR. The hydrodynamic radii calculated thereof demonstrate the superior coordination ability of the cyclic carbonates as compared to linear structures. Furthermore, Haven ratios indicate rather different dissociation abilities of different carbonate solvents, depending on the structural fragment of the solvents. (C)2015 Elsevier Ltd. All rights reserved.