摘要:
The small-molecule organic semiconductor tetraceno[2,3-b]thiophene has been synthesized through an environmentally friendly synthetic route, utilizing NaBH4, rather than Al/HgCl2, for the reduction of the quinone. Low-voltage organic thin-film transistors (TFTs) have been fabricated using tetraceno[2,3-b]thiophene and, for comparison, pentacene and anthradithiophene as the semiconductor. The tetraceno[2,3-b]thiophene TFTs have an effective field-effect mobility as large as 0.55 cm(2) V-1 s(-1) and a subthreshold swing of 0.13 V/decade. In addition, it has been found that the contact resistance of the tetraceno[2,3-b]thiophene TFTs is substantially smaller than that of the anthradithiophene TFTs and similar to that of the pentacene TFTs. The long-term air stability of TFTs based on all three semiconductors has been monitored over a period of 12 months. The initial charge-carrier mobility of the tetraceno[2,3-b]thiophene TFTs is similar to 50% smaller than that of the pentacene TFTs, but as a result of the greater ionization potential and better air stability induced by the terminal thiophene ring condensed at the thiophene-b-bond, the tetraceno[2,3-b]thiophene TFTs outperform the pentacene TFTs after continuous exposure to ambient air for just 3 months.