Cytotoxic 3,5-bis(benzylidene)piperidin-4-ones and N-acyl analogs displaying selective toxicity for malignant cells
摘要:
A series of 3,5-bis(benzylidene)piperidin-4-ones 1, 1-acryloyl-3,5-bis(benzylidene)piperidin-4-ones 2 and adducts of 2 with sodium 2-mercaptoethanesulfonate (mesna), namely series 3, were prepared as candidate cytotoxic agents. These compounds were examined against neoplastic HSC-2, HSC-4 and HL-60 cells as well as HGF, HPC and HPLF normal cell lines and many of the compounds displayed selective toxicity for malignant cells. The CC50 values of the analogs in series 2 towards the cancer cell lines were mainly submicromolar. The relative potencies, selectivity and log P values were in the order of 2 > 1 > 3. The sulfonic acid group of a representative compound in series 3 was replaced by a thiol function to produce 4 leading to substantial increases in cytotoxic potencies and hydrophobicity indicating that the presence of a hydrophilic sulfonic acid group was disadvantageous in terms of potency. Molecular modeling suggested that the superior cytotoxicity of various members of series 1-3 over an acyclic analog 5 may have been due to the greater torsion angles theta(1) and theta(2) created between the arylidene aryl rings and the adjacent olefinic groups in series 1-3. (C) 2007 Elsevier Masson SAS. All rights reserved.
1-[3-(2-Hydroxyethylsulfanyl)propanoyl]-3,5-bis(benzylidene)-4-piperidones: A novel cluster of P-glycoprotein dependent multidrug resistance modulators
摘要:
A series of 1-[3-(2-hydroxyethylsulfanyl)propanoyl]-3,5-bis(benzylidene)-4-piperidones 4a-e display promising P-glycoprotein dependent multidrug resistance (MDR) revertant properties and are significantly more potent than a reference drug verapamil when evaluated against L-5178Y MDR lymphoma cells. These dienones may be referred to as dual agents having both MDR revertant properties and tumour-selective cytotoxicity. In particular, 3,5-bis(4-chlorobenzylidene)-1-[3-(2-hydroxyethylsulfanyl]propanoyl-4-piperidone 4d emerged as a lead molecule for further development based on its MDR revertant properties, cytotoxic potencies and tumour-selective toxicity. The structure-activity relationships reveal important structural requirements for further designing of potent MDR revertants. (C) 2016 Elsevier Ltd. All rights reserved.