Synthesis and Evaluation of Nitroheterocyclic Phosphoramidates as Hypoxia-Selective Alkylating Agents
摘要:
A series of novel nitroheterocyclic phosphoramidates has been prepared, and the cytotoxicity of these compounds has been evaluated in clonogenic assays against B16, wild-type and cyclophosphamide-resistant MCF-7, and HT-29 cells under aerobic conditions and HT-29 cells under hypoxic conditions. All compounds were comparable in toxicity to wild-type and resistant MCF-7 cells and were also selectively toxic to HT-29 cells under hypoxic conditions (selectivity ratios 1.7 to >20). Analogues lacking the nitro group were not cytotoxic. Electron-withdrawing substituents increased cytotoxicity under aerobic conditions and thereby decreased hypoxic selectivity. In contrast, an electron-donating substituent markedly decreased both aerobic and hypoxic cytotoxicity but enhanced hypoxic selectivity. Chemical reduction of the nitro group resulted in rapid expulsion of the cytotoxic phosphoramide mustard. The most potent of these compounds show significant cytotoxicity under both aerobic and hypoxic conditions.
Synthesis and Evaluation of Nitroheterocyclic Phosphoramidates as Hypoxia-Selective Alkylating Agents
摘要:
A series of novel nitroheterocyclic phosphoramidates has been prepared, and the cytotoxicity of these compounds has been evaluated in clonogenic assays against B16, wild-type and cyclophosphamide-resistant MCF-7, and HT-29 cells under aerobic conditions and HT-29 cells under hypoxic conditions. All compounds were comparable in toxicity to wild-type and resistant MCF-7 cells and were also selectively toxic to HT-29 cells under hypoxic conditions (selectivity ratios 1.7 to >20). Analogues lacking the nitro group were not cytotoxic. Electron-withdrawing substituents increased cytotoxicity under aerobic conditions and thereby decreased hypoxic selectivity. In contrast, an electron-donating substituent markedly decreased both aerobic and hypoxic cytotoxicity but enhanced hypoxic selectivity. Chemical reduction of the nitro group resulted in rapid expulsion of the cytotoxic phosphoramide mustard. The most potent of these compounds show significant cytotoxicity under both aerobic and hypoxic conditions.
Synthesis and Evaluation of Nitroheterocyclic Phosphoramidates as Hypoxia-Selective Alkylating Agents
作者:Richard F. Borch、Jiwen Liu、James P. Schmidt、Joseph T. Marakovits、Carolyn Joswig、Jerry J. Gipp、R. Timothy Mulcahy
DOI:10.1021/jm0001020
日期:2000.6.1
A series of novel nitroheterocyclic phosphoramidates has been prepared, and the cytotoxicity of these compounds has been evaluated in clonogenic assays against B16, wild-type and cyclophosphamide-resistant MCF-7, and HT-29 cells under aerobic conditions and HT-29 cells under hypoxic conditions. All compounds were comparable in toxicity to wild-type and resistant MCF-7 cells and were also selectively toxic to HT-29 cells under hypoxic conditions (selectivity ratios 1.7 to >20). Analogues lacking the nitro group were not cytotoxic. Electron-withdrawing substituents increased cytotoxicity under aerobic conditions and thereby decreased hypoxic selectivity. In contrast, an electron-donating substituent markedly decreased both aerobic and hypoxic cytotoxicity but enhanced hypoxic selectivity. Chemical reduction of the nitro group resulted in rapid expulsion of the cytotoxic phosphoramide mustard. The most potent of these compounds show significant cytotoxicity under both aerobic and hypoxic conditions.