摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2S)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-(dimethylamino)-2-naphthalen-1-yl-1-phenylbutan-2-ol

中文名称
——
中文别名
——
英文名称
(2S)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-(dimethylamino)-2-naphthalen-1-yl-1-phenylbutan-2-ol
英文别名
——
(2S)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-(dimethylamino)-2-naphthalen-1-yl-1-phenylbutan-2-ol化学式
CAS
——
化学式
C32H31BrN2O2
mdl
——
分子量
555.5
InChiKey
QUIJNHUBAXPXFS-BDJZEIKTSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    7.2
  • 重原子数:
    37
  • 可旋转键数:
    8
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.22
  • 拓扑面积:
    45.6
  • 氢给体数:
    1
  • 氢受体数:
    4

ADMET

代谢
CYP3A4是在体外代谢Bedaquiline和形成N-单脱甲基代谢物(M2)的主要CYP同工酶,该代谢物在抗分枝杆菌效力方面活性降低了4到6倍。根据临床前研究,Bedaquiline主要通过粪便消除。在临床研究中,未改变Bedaquiline的尿排泄量小于剂量的0.001%,这表明未改变药物的肾清除是不重要的。达到Cmax后,Bedaquiline浓度呈三指数下降。Bedaquiline和N-单脱甲基代谢物(M2)的平均终末消除半衰期大约为5.5个月。这个长的终末消除阶段可能反映了Bedaquiline和M2从外周组织的缓慢释放。
CYP3A4 was the major CYP isoenzyme involved in vitro in the metabolism of bedaquiline and the formation of the N-monodesmethyl metabolite (M2), which is 4 to 6-times less active in terms of antimycobacterial potency. Based on preclinical studies, bedaquiline is mainly eliminated in feces. The urinary excretion of unchanged bedaquiline was < 0.001% of the dose in clinical studies, indicating that renal clearance of unchanged drug is insignificant. After reaching Cmax, bedaquiline concentrations decline tri-exponentially. The mean terminal elimination half-life of bedaquiline and the N-monodesmethyl metabolite (M2) is approximately 5.5 months. This long terminal elimination phase likely reflects slow release of bedaquiline and M2 from peripheral tissues.
来源:Hazardous Substances Data Bank (HSDB)
代谢
单次给药后,主要代谢物M2的平均AUC0-24小时在小白鼠中比bedaquiline的AUC0-24小时高2到7倍,在大鼠和狗中通常相似,大约低2倍。
After a single dose the mean AUC0-24 hr of the major metabolite M2 was 2 to 7-fold higher than AUC0-24 hr of bedaquiline in mice and was generally similar to 2-fold lower in rats and dogs.
来源:Hazardous Substances Data Bank (HSDB)
代谢
贝达奎林是一种最近批准用于治疗多药耐药结核病的药物。在临床实践中已经注意到贝达奎林对心脏和肝脏的不良药物反应。当前研究使用代谢组学方法调查了贝达奎林在人肝细胞中的代谢。确认了通过CYP3A4的贝达奎林N-去甲基化是贝达奎林代谢的主要途径。除了CYP3A4之外,我们还发现CYP2C8和CYP2C19也参与了贝达奎林的N-去甲基化。CYP2C8、CYP2C19和CYP3A4在贝达奎林N-去甲基化中的Km值分别为13.1、21.3和8.5微摩尔。我们还确定了一种产生醛中间体的贝达奎林的新代谢途径。总之,这项研究扩展了我们对贝达奎林代谢的了解,这可以应用于预测和预防与贝达奎林相关的药物-药物相互作用和不良药物反应。
Bedaquiline is a recently approved drug for the treatment of multidrug-resistant tuberculosis. Adverse cardiac and hepatic drug reactions to bedaquiline have been noted in clinical practice. The current study investigated bedaquiline metabolism in human hepatocytes using a metabolomic approach. Bedaquiline N-demethylation via CYP3A4 was confirmed as the major pathway in bedaquiline metabolism. In addition to CYP3A4, we found that both CYP2C8 and CYP2C19 contributed to bedaquiline N-demethylation. The Km values of CYP2C8, CYP2C19, and CYP3A4 in bedaquiline N-demethylation were 13.1, 21.3, and 8.5 uM, respectively. We also identified a novel metabolic pathway of bedaquiline that produced an aldehyde intermediate. In summary, this study extended our knowledge of bedaquiline metabolism, which can be applied to predict and prevent drug-drug interactions and adverse drug reactions associated with bedaquiline.
来源:Hazardous Substances Data Bank (HSDB)
代谢
没有在静脉注射bedaquiline后发生手性转化。在大鼠、小鼠、狗、猴子和人体中,bedaquiline的体外代谢主要是通过I相反应,最重要的是N-脱甲基生成M2,然后进一步N-脱甲基生成M3,氧化和环氧化。通过放射性分析和LC-MS/MS在动物中确定,M2是所有临床前物种中的主要循环代谢物。尚未在人体中开展放射性标记bedaquiline的质量平衡研究。因此,不能排除人体中可能形成动物物种中不形成的额外未检测到的代谢物。在大鼠和狗中重复给予bedaquiline后,M2的AUC0-24小时血浆水平通常与bedaquiline相似,但在MDR-TB患者中,M2的血浆水平比bedaquiline低3.5至4.5倍。除了M2和M3之外,还在人体血浆中检测到了M2的羟基衍生物(M20)和M2的二氢二醇衍生物(M11),这两种代谢物在大鼠和狗中以相似的相对浓度也被发现。
No chiral conversion of bedaquiline occurred in vivo after administration of bedaquiline to mice, rats, dogs, monkeys and humans. In hepatocytes and subcellular fractions from preclinical species and humans, the in vitro metabolism of (14)C-bedaquiline was via Phase I reactions and the most important pathway was N-demethylation to M2, which was followed by a second N-demethylation to M3, oxidation and epoxidation. M2 was the major circulating metabolite in all preclinical species as determined by radioactivity profiling and LC-MS/MS in the animals. No mass balance study with radiolabelled bedaquiline has been conducted in humans. It can therefore not be excluded that additional undetected metabolites may be formed in humans that are not formed in the animal species. M2-AUC0-24 hr plasma levels were generally comparable to 2-fold lower than those of bedaquiline in rats and dogs upon repeated administration of bedaquiline, and 3.5- to 4.5-fold lower in human subjects with MDR-TB. In addition to M2 and M3, a hydroxylated derivative of M2 (M20) and a dihydrodiol derivative of M2 (M11), were detected in human plasma. These two metabolites were also found in rats and dogs at similar relative concentrations.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 肝毒性
在使用包含贝达喹啉的多药方案的病人中,有8%到12%出现肝功能测试异常。这些异常通常无症状,严重程度为轻到中度,持续时间有限。在许多情况下,很难确定哪种抗结核药物导致了这些异常,但建议在贝达喹啉治疗期间每月监测肝功能测试。已经有报道在使用贝达喹啉治疗期间出现临床明显的肝损伤,但这些病例的临床特征、病程和结果尚未描述。至少有三例晚期肝病死亡的病例描述了在使用贝达喹啉的患者中,但对肝衰竭归因于贝达喹啉的说法存在疑问。多药耐药结核病的治疗具有挑战性,应在有结核病治疗专长的医生的指导下进行。
Liver test abnormalities occur in 8% to 12% of patients treated with multiple drug regimens that include bedaquiline. These abnormalities are usually asymptomatic, mild-to-moderate in severity and self-limited in duration. In many instances, it is difficult to determine which of the antituberculosis medications accounts for the abnormalities, but monitoring of liver tests at monthly intervals is recommended during bedaquiline therapy. Clinically apparent liver injury has been reported with bedaquiline therapy, but the clinical features, course and outcome of these cases has not been described. At least three deaths from end stage liver disease have been described in patients taking bedaquiline, but the attribution of the hepatic failure to bedaquiline has been questioned. The management of multidrug resistant tuberculosis is challenging and should be under the direction of physicians with expertise in tuberculosis therapy.
来源:LiverTox
毒理性
  • 相互作用
药物相互作用(增加QT间期延长的风险)。与其他延长QT间期的药物(例如,氯法齐明、氟喹诺酮类、大环内酯类)同时使用可能导致QT间期的累加或协同效应。
Pharmacologic interaction (increased risk of QT interval prolongation). Concomitant use with other drugs that prolong the QT interval (e.g., clofazimine, fluoroquinolones, macrolides) may result in additive or synergistic effects on the QT interval.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
贝达喹啉主要通过细胞色素P-450(CYP)同工酶3A4进行代谢。与强效的CYP3A4抑制剂(例如,酮康唑)同时使用贝达喹啉可能会增加贝达喹啉的浓度-时间曲线下面积(AUC),并增加与药物相关的不良反应的风险。应避免长时间(超过14天)同时使用贝达喹啉和强效的CYP3A4抑制剂系统药物,除非同时使用的益处大于风险。接受此类联合治疗的患者应监测与贝达喹啉相关的不良反应。与CYP3A4的强效诱导剂(包括利福霉素类药物,例如利福平、利福喷丁、利福布丁)同时使用贝达喹啉可能会减少贝达喹啉的AUC,并降低药物的治疗效果。应避免与利福霉素类药物或其他强效的CYP3A4诱导剂同时使用贝达喹啉。
Bedaquiline is metabolized primarily by cytochrome P-450 (CYP) isoenzyme 3A4. Concomitant use of bedaquiline with potent inhibitors of CYP3A4 (e.g., ketoconazole) may increase the area under the concentration-time curve (AUC) of bedaquiline and increase the risk of adverse effects associated with the drug. Concomitant use of bedaquiline and systemic drugs that are potent inhibitors of CYP3A4 for a duration longer than 14 consecutive days should be avoided, unless the benefits of concomitant use outweigh the risks. Patients receiving such concomitant therapy should be monitored for bedaquiline-related adverse effects. Concomitant use of bedaquiline with potent inducers of CYP3A4, including rifamycins (e.g., rifampin, rifapentine, rifabutin), may reduce the AUC of bedaquiline and decrease the therapeutic effects of the drug. Concomitant use of bedaquiline with rifamycins or other potent inducers of CYP3A4 should be avoided.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
因为bedaquiline(贝达喹啉)和氟喹诺酮类药物的联合使用可能会增加QT间期延长的风险,所以在联合治疗期间应密切监测心电图。
Because concomitant use of bedaquiline and fluoroquinolones may increase the risk of QT interval prolongation, ECGs should be monitored closely during concomitant therapy.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
因为bedaquiline(贝达喹啉)和macrolides(大环内酯类抗生素)的联合使用可能会增加QT间期延长的风险,所以在联合治疗期间应密切监测心电图。
Because concomitant use of bedaquiline and macrolides may increase the risk of QT interval prolongation, ECGs should be monitored closely during concomitant therapy.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
Bedaquiline 是一种用于治疗肺多药耐药结核分枝杆菌感染的新药,与其他药物联合使用。本研究的目的是开发一个群体药代动力学(PK)模型,以描述健康受试者和药物敏感或耐多药结核病患者在一期和二期研究中Bedaquiline的浓度-时间数据。总共使用了来自480个受试者的5,222个PK观察数据,采用非线性混合效应建模方法。PK模型用具有双重零阶输入(以捕捉吸收过程中观察到的双重峰)和长末端半衰期(t1/2)的四室处置模型来描述。该模型包括了对表观清除率(CL/F)、表观中央分布容积(Vc/F)、第一次输入的剂量比例和生物利用度(F)的受试者间变异性。Bedaquiline广泛分布,稳态时表观容积大于10,000升,清除率低。长末端t1/2可能是由于从组织室重新分布。最终的协变量模型充分描述了数据,并且具有良好的模拟特性。CL/F在黑人受试者中比其他种族的受试者高出52.0%,而Vc/F在女性中比男性低15.7%,尽管它们对Bedaquiline暴露的影响被认为临床上不相关。研究之间在F和CL/F上观察到了小的差异。未解释的残留变异性为20.6%,长期二期研究中更高(27.7%)。
Bedaquiline is a novel agent for the treatment of pulmonary multidrug-resistant Mycobacterium tuberculosis infections, in combination with other agents. The objective of this study was to develop a population pharmacokinetic (PK) model for bedaquiline to describe the concentration-time data from phase I and II studies in healthy subjects and patients with drug-susceptible or multidrug-resistant tuberculosis (TB). A total of 5,222 PK observations from 480 subjects were used in a nonlinear mixed-effects modeling approach. The PK was described with a 4-compartment disposition model with dual zero-order input (to capture dual peaks observed during absorption) and long terminal half-life (t1/2). The model included between-subject variability on apparent clearance (CL/F), apparent central volume of distribution (Vc/F), the fraction of dose via the first input, and bioavailability (F). Bedaquiline was widely distributed, with apparent volume at steady state of >10,000 liters and low clearance. The long terminal t1/2 was likely due to redistribution from the tissue compartments. The final covariate model adequately described the data and had good simulation characteristics. The CL/F was found to be 52.0% higher for subjects of black race than that for subjects of other races, and Vc/F was 15.7% lower for females than that for males, although their effects on bedaquiline exposure were not considered to be clinically relevant. Small differences in F and CL/F were observed between the studies. The residual unexplained variability was 20.6% and was higher (27.7%) for long-term phase II studies.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
Bedaquiline在大鼠体内会分布到乳汁中;目前尚不清楚该药物是否也会分布到人乳中。
Bedaquiline is distributed into milk in rats; it is not known whether the drug is distributed into human milk.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
bedaquiline的血浆蛋白结合率大于99.9%。中央室的分布容积估计大约为164升。
The plasma protein binding of bedaquiline is > 99.9%. The volume of distribution in the central compartment is estimated to be approximately 164 L.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
口服给药后,贝达喹啉的最大血浆浓度(Cmax)通常在大约给药后5小时达到。Cmax和血浆浓度-时间曲线下的面积(AUC)在健康志愿者中研究的最高剂量(700毫克单次剂量和每日一次400毫克多次剂量)下呈比例增加。与空腹条件下给药相比,与含有大约22克脂肪(总共558千卡路里)的标准餐一起服用贝达喹啉,相对生物利用度增加了约2倍。因此,应与食物一起服用贝达喹啉,以提高其口服生物利用度。
After oral administration bedaquiline maximum plasma concentrations (Cmax) are typically achieved at approximately 5 hours post-dose. Cmax and the area under the plasma concentration-time curve (AUC) increased proportionally up to the highest doses studied in healthy volunteers (700 mg single-dose and once daily 400 multiple doses). Administration of bedaquiline with a standard meal containing approximately 22 grams of fat (558 total Kcal) increased the relative bioavailability by about 2-fold compared to administration under fasted conditions. Therefore, bedaquiline should be taken with food to enhance its oral bioavailability.
来源:Hazardous Substances Data Bank (HSDB)

文献信息

  • [EN] PROCESS FOR THE PREPARATION OF BEDAQUILINE FUMARATE<br/>[FR] PROCÉDÉ DE PRÉPARATION DE FUMARATE DE BÉDAQUILINE
    申请人:MYLAN LABORATORIES LTD
    公开号:WO2020161743A1
    公开(公告)日:2020-08-13
    The present disclosure relates to an improved process for the preparation of bedaquiline fumarate, comprising a step of preparing bedaquiline by reaction of 3-benzyl-6-bromo-2-methoxyquinoline 5 with 3-(dimethylamino)-l-(naphthalen-l-yl)propan-l-one 4 in the presence of lithium pyrrolidide.
    本公开涉及一种改进的床替诺韦富马酸盐制备工艺,包括通过在锂吡咯烷存在下将3-苄基-6-溴-2-甲氧基喹啉-5与3-(二甲氨基)-1-(萘-1-基)丙酮-1反应制备床替诺韦的步骤。
  • QUINOLINE, NAPHTHALENE AND CONFORMATIONALLY CONSTRAINED QUINOLINE OR NAPHTHALENE DERIVATIVES AS ANTI-MYCOBACTERIAL AGENTS
    申请人:Chattopadhyaya Jyoti
    公开号:US20110059948A1
    公开(公告)日:2011-03-10
    The invention relates to a compound of general formula I, II, III, IV, V, VI, VII, VIII, IX, X or a tautomer and the stereochemically isomeric forms thereof or pharmaceutically acceptable salts thereof, a N-oxide form thereof or a pro-drug thereof. The compound is usable as a medicament for the treatment of mycobacterial disease.
    本发明涉及一种符合以下公式I、II、III、IV、V、VI、VII、VIII、IX、X或其互变异构体,或其药学上可接受的盐、N-氧化物形式或前药的化合物。该化合物可用作治疗分枝杆菌病的药物。
  • COMBINATION THERAPY TO TREAT MYCOBACTERIUM DISEASES
    申请人:Locher Christopher Phillip
    公开号:US20140045791A1
    公开(公告)日:2014-02-13
    The present invention relates to a compound of formula (I) or a pharmaceutically acceptable salt thereof wherein X and R are as defined herein. The compounds of formula (I) are useful as gyrase and/or topoisomerase IV inhibitors for treating bacterial infections. The compounds of formula (I) either possess a broad range of anti-bacterial activity and advantageous toxicological properties or are prodrugs of compounds having said activity.
    本发明涉及式(I)化合物或其药学上可接受的盐,其中X和R的定义如本文所述。式(I)化合物可用作抑制DNA旋转酶和/或拓扑异构酶IV的抑制剂,用于治疗细菌感染。式(I)化合物具有广泛的抗菌活性和优越的毒理学特性,或者是具有该活性的前药。
  • US9572809B2
    申请人:——
    公开号:US9572809B2
    公开(公告)日:2017-02-21
查看更多

同类化合物

(E,Z)-他莫昔芬N-β-D-葡糖醛酸 (E/Z)-他莫昔芬-d5 (4S,5R)-4,5-二苯基-1,2,3-恶噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4R,4''R,5S,5''S)-2,2''-(1-甲基亚乙基)双[4,5-二氢-4,5-二苯基恶唑] (1R,2R)-2-(二苯基膦基)-1,2-二苯基乙胺 鼓槌石斛素 高黄绿酸 顺式白藜芦醇三甲醚 顺式白藜芦醇 顺式己烯雌酚 顺式-桑皮苷A 顺式-曲札芪苷 顺式-二苯乙烯 顺式-beta-羟基他莫昔芬 顺式-a-羟基他莫昔芬 顺式-3,4',5-三甲氧基-3'-羟基二苯乙烯 顺式-1,2-二苯基环丁烷 顺-均二苯乙烯硼酸二乙醇胺酯 顺-4-硝基二苯乙烯 顺-1-异丙基-2,3-二苯基氮丙啶 阿非昔芬 阿里可拉唑 阿那曲唑二聚体 阿托伐他汀环氧四氢呋喃 阿托伐他汀环氧乙烷杂质 阿托伐他汀环(氟苯基)钠盐杂质 阿托伐他汀环(氟苯基)烯丙基酯 阿托伐他汀杂质D 阿托伐他汀杂质94 阿托伐他汀内酰胺钠盐杂质 阿托伐他汀中间体M4 阿奈库碘铵 银松素 铒(III) 离子载体 I 钾钠2,2'-[(E)-1,2-乙烯二基]二[5-({4-苯胺基-6-[(2-羟基乙基)氨基]-1,3,5-三嗪-2-基}氨基)苯磺酸酯](1:1:1) 钠{4-[氧代(苯基)乙酰基]苯基}甲烷磺酸酯 钠;[2-甲氧基-5-[2-(3,4,5-三甲氧基苯基)乙基]苯基]硫酸盐 钠4-氨基二苯乙烯-2-磺酸酯 钠3-(4-甲氧基苯基)-2-苯基丙烯酸酯 重氮基乙酸胆酯酯 醋酸(R)-(+)-2-羟基-1,2,2-三苯乙酯 酸性绿16 邻氯苯基苄基酮 那碎因盐酸盐 那碎因[鹼] 达格列净杂质54 辛那马维林 赤藓型-1,2-联苯-2-(丙胺)乙醇 赤松素 败脂酸,丁基丙-2-烯酸酯,甲基2-甲基丙-2-烯酸酯,2-甲基丙-2-烯酸