New Antibacterial Agents Derived from the DNA Gyrase Inhibitor Cyclothialidine
摘要:
Cyclothialidine (1, Ro 09-1437) is a potent DNA gyrase inhibitor that was isolated from Streptomyces filipinensis NR0484 and is a member of a new family of natural products. It acts by competitively inhibiting the ATPase activity exerted by the B subunit of DNA gyrase but barely exhibits any growth inhibitory activity against intact bacterial cells, presumably due to insufficient permeation of the cytoplasmic membrane. To explore the antibacterial potential of 1, we developed a flexible synthetic route allowing for the systematic modification of its structure. From a first set of analogues, structure-activity relationships (SAR) were established for different substitution patterns, and the 14-hydroxylated, bicyclic core (X) of 1 seemed to be the structural prerequisite for DNA gyrase inhibitory activity. The variation of the lactone ring size, however, revealed that activity can be found among 11- to 16-membered lactones, and even seco-analogues were shown to maintain some enzyme inhibitory properties, thereby reducing the minimal structural requirements to a rather simple, hydroxylated benzyl sulfide (XI). On the basis of these "minimal structures" a modification program afforded a number of inhibitors that showed in vitro activity against Gram-positive bacteria. The best activities were displayed by 14-membered lactones, and representatives of this subclass exhibit excellent and broad in vitro antibacterial activity against Gram-positive pathogens, including Staphylococcus aureus, Streptococcus pyogenes, and Enterococcus faecalis, and overcome resistance against clinically used drugs. By improving the pharmacokinetic properties of the most active compounds (94, 97), in particular by lowering their lipophilic properties, we were able to identify congeners of cyclothialidine (1) that showed efficacy in vivo.
Polymer-supported sulfinimidoyl chloride was prepared in four steps from chloromethyl polystyrene resin. Stoichiometric and catalytic oxidations of various alcohols to the corresponding carbonylcompounds were carried out cleanly by using the prepared polymer-bound oxidant.
Room Temperature Ambient Pressure (RTAP)-Hydroformylation in Water Using a Self-Assembling Ligand
作者:Alexander T. Straub、Marina Otto、Ippei Usui、Bernhard Breit
DOI:10.1002/adsc.201300258
日期:2013.7.8
We herein demonstrate a hydroformylation at roomtemperature and ambientpressure (RTAP) using our Rh/6‐DPPon (1) system in aqueous media. The hydrogen bonding network of the ligand backbone stays intact, exemplified by the excellent regioselectivity for the linear aldehyde. Various substrates with different functional groups (with some prone to hydrolysis) are stable under the applied conditions and