An enantioselective nucleophilic substitution reaction of achiral dialkoxysilane has been developed. The reaction proceeds with efficient stereocontrol on the silicon chirality center to give the enantioenriched silyl ether, which can be converted to the silanol without loss of enantiopurity. We have analyzed the steric course of the reaction by using DFT calculations and propose a transition state model to explain the observed enantioselectivity.
Enantioselective Hydroxylation of Dihydrosilanes to Si‐Chiral Silanols Catalyzed by In Situ Generated Copper(II) Species
Copper(II)-mediated σ-metathesis with prochiral dihydrosilanes has been successfully leveraged to efficiently synthesize Si-chiral silanols as well as many other related Si-chiral skeletons. The reaction hinges on the continuous generation of catalytically active copper(II) species via single-electron transfer oxidation of copper(I) by alkyl halides and the efficient stereocontrol with multidentate
铜 (II) 介导的σ复分解与前手性二氢硅烷已成功用于有效合成 Si-手性硅烷醇以及许多其他相关的 Si-手性骨架。该反应取决于通过卤代烷对铜 (I) 进行单电子转移氧化连续生成具有催化活性的铜 (II),以及使用多齿阴离子 N,N,P-配体进行有效的立体控制。