Synthesis of Crystalline Molecular Gyrotops and Phenylene Rotation inside the Cage
摘要:
Phenylene-bridged macrocage molecules were synthesized as molecular gyrotops because the rotor can rotate even in a crystal. The chain-length-dependent properties of the molecular gyrotops were investigated in order to explore the potential to create new molecular materials. The formation of the cage in the synthesis of each molecular gyrotop depended on the length of the alkyl chains of the precursor. The rotation modes and energy barriers for phenylene rotation inside the crystals of the molecular gyrotops were changed by varying the chain length of the cage.
A Molecular Balloon: Expansion of a Molecular Gyrotop Cage Due to Rotation of the Phenylene Rotor
作者:Wataru Setaka、Kentaro Yamaguchi
DOI:10.1021/ja305822e
日期:2012.8.1
A macrocage molecule with a bridged phenylene rotor has been reported as a molecular gyrotop, because the rotor can rotate even in a crystalline state. Although the most stable cage structure of the molecular gyrotop in a crystal was folded and shrunken at low temperature, expansion of the cage was observed at high temperature due to rapid rotation of the phenylene in a crystal. This phenomenon is analogous to the deflation and inflation of a balloon. Moreover, the unusually large thermal expansion coefficient of the crystal was estimated in the temperature range in which the expansion of the cage was observed, indicating a new function of dynamic states of the molecules.
Synthesis of Crystalline Molecular Gyrotops and Phenylene Rotation inside the Cage
Phenylene-bridged macrocage molecules were synthesized as molecular gyrotops because the rotor can rotate even in a crystal. The chain-length-dependent properties of the molecular gyrotops were investigated in order to explore the potential to create new molecular materials. The formation of the cage in the synthesis of each molecular gyrotop depended on the length of the alkyl chains of the precursor. The rotation modes and energy barriers for phenylene rotation inside the crystals of the molecular gyrotops were changed by varying the chain length of the cage.