Synthesis and structure–activity relationships of N-(4-amino-2,6-diisopropylphenyl)-N’-(1,4-diarylpiperidine-4-yl)methylureas as anti-hyperlipidemic agents
摘要:
Based on 1,4-diarylpiperidine-4-methylureas, a new class of ACAT inhibitors, we examined in the study the SAR of a series of compounds prepared by replacing the substituent at the three aromatic parts. Introduction of long alkoxy group onto the phenyl moiety at the B-part was effective in improving both the inhibitory activity for ACAT and the up-regulatory activity for LDL-R expression. Particularly, 3-hydroxy-propoxy group (43) on the phenyl moiety of B-part led to improved solubility, while keeping both biological activities. Compound 43 inhibited ACAT activity with an IC(50) value of 18 nM, which is superior to that of a known ACAT inhibitor, CI-1011. In addition, compound 43 revealed an LDL-R up-regulatory activity comparable to that of SMP-797. We therefore expect this compound to be a novel ACAT inhibitor. (C) 2009 Elsevier Ltd. All rights reserved.
Synthesis and structure–activity relationships of N-(4-amino-2,6-diisopropylphenyl)-N’-(1,4-diarylpiperidine-4-yl)methylureas as anti-hyperlipidemic agents
摘要:
Based on 1,4-diarylpiperidine-4-methylureas, a new class of ACAT inhibitors, we examined in the study the SAR of a series of compounds prepared by replacing the substituent at the three aromatic parts. Introduction of long alkoxy group onto the phenyl moiety at the B-part was effective in improving both the inhibitory activity for ACAT and the up-regulatory activity for LDL-R expression. Particularly, 3-hydroxy-propoxy group (43) on the phenyl moiety of B-part led to improved solubility, while keeping both biological activities. Compound 43 inhibited ACAT activity with an IC(50) value of 18 nM, which is superior to that of a known ACAT inhibitor, CI-1011. In addition, compound 43 revealed an LDL-R up-regulatory activity comparable to that of SMP-797. We therefore expect this compound to be a novel ACAT inhibitor. (C) 2009 Elsevier Ltd. All rights reserved.
Novel 1,4-diarylpiperidine-4-methylureas as anti-hyperlipidemic agents: Dual effectors on acyl-CoA:cholesterol O-acyltransferase and low-density lipoprotein receptor expression
A family of 1,4-diarylpiperidine-4-methylureas were designed and synthesized as novel dual effectors on ACAT and LDL receptor expression. We examined SAR of the synthesized compounds focusing on substitution at the three aromatic parts of the starting compound 1 and succeeded in identifying essential substituents for inhibition of ACAT and up-regulation of hepatic LDL receptor expression. Especially, we found that compound 12f, which can easily be prepared, has biological properties comparable to those of SMP-797, a promising ACAT inhibitor. In addition, the in vitro effects of 12f on lipid metabolism were substantially superior to those of a known ACAT inhibitor, Avasimibe. (C) 2009 Elsevier Ltd. All rights reserved.