Design, Synthesis, and Biological Evaluations of Aplyronine A–Mycalolide B Hybrid Compound
摘要:
A hybrid compound consisting of aplyronine A and mycalolide B was synthesized, and its biological activities were evaluated. The hybrid compound was found to have somewhat more potent actin-depolymerizing activity than aplyronine A. In contrast, the hybrid compound possessed about 1000-fold less cytotoxicity than aplyronine A. These results indicated that there is no direct correlation between actin-depolymerizing activity and cytotoxicity.
Design, Synthesis, and Biological Evaluations of Aplyronine A–Mycalolide B Hybrid Compound
摘要:
A hybrid compound consisting of aplyronine A and mycalolide B was synthesized, and its biological activities were evaluated. The hybrid compound was found to have somewhat more potent actin-depolymerizing activity than aplyronine A. In contrast, the hybrid compound possessed about 1000-fold less cytotoxicity than aplyronine A. These results indicated that there is no direct correlation between actin-depolymerizing activity and cytotoxicity.
Second-generation totalsynthesis of aplyronine A, a potentantitumormarine macrolide, was achieved using Ni/Cr-mediated coupling reactions as key steps. The overall yield of the second-generation synthetic pathway of aplyronine A was 1.4%, obtained in 38 steps based on the longest linear sequence. Compared to our first-generation synthetic pathway of aplyronine A, the second-generation synthesis greatly improved