Production of Carminic Acid by Metabolically Engineered <i>Escherichia coli</i>
作者:Dongsoo Yang、Woo Dae Jang、Sang Yup Lee
DOI:10.1021/jacs.0c12406
日期:2021.4.14
Carminicacid is an aromatic polyketide found in scale insects (i.e., Dactylopius coccus) and is a widely used natural red colorant. It has long been produced by the cumbersome farming of insects followed by multistep purification processes. Thus, there has been much interest in producing carminicacid by the fermentation of engineered bacteria. Here we report the complete biosynthesis of carminic
Octaketide synthase, a novel plant-specific type III polyketide synthase from Aloe arborescens, efficiently accepted (2RS)-methylmalonyl-CoA as a sole substrate to produce 6-ethyl-4-hydroxy-3,5-dimethyl-2-pyrone. On the other hand, a tetraketide-producing chalcone synthase from Scutellaria baicalensis and a diketide-producing benzalacetone synthase from Rheum palmatum also yielded the unnatural methylated C-9 triketide pyrone as a single product by sequential decarboxylative condensations of three molecules of (2RS)-methylmalonyl-CoA. (c) 2006 Elsevier Ltd. All rights reserved.
Enzymatic Formation of Unnatural Novel Chalcone, Stilbene, and Benzophenone Scaffolds by Plant Type III Polyketide Synthase
A C-19 hexaketide stilbene and a C-21 heptaketide chalcone were synthesized by Aloe arborescens octaketide synthase (OKS), a plant-specific type III polyketide synthase (PKS). Remarkably, the C21 chalcone-forming activity was dramatically increased in a structure-guided OKS N222G mutant that produces a C-20 decaketide SEK15 from 10 molecules of malonyl-CoA. The findings suggested further strategies for production of unnatural polyketides by combination of the precursor-directed biosynthesis and the structure-guided engineering of type III PKS.
Structure-Based Engineering of a Plant Type III Polyketide Synthase: Formation of an Unnatural Nonaketide Naphthopyrone
Pentaketide chromone synthase (PCS) from Aloe arborescens is a novel plant-specific type III polyketide synthase (PKS) that produces 5,7-dihydroxy-2-methylchromone from five molecules of malonyl-CoA. On the basis of the crystal structures of wild-type and M207G mutant PCS, the F80A/Y82A/M207G triple mutant was constructed and shown to produce an unnatural novel nonaketide naphthopyrone by sequential condensations of nine molecules of malonyl-CoA. This is the first demonstration of the formation of a nonaketide by the structurally simple type III PKS. A homology model predicted that the active-site cavity volume of the triple mutant is increased to 4 times that of the wild-type PCS.
A Plant Type III Polyketide Synthase that Produces Pentaketide Chromone
A novel plant-specific type III polyketide synthase (PKS) that catalyzes formation of a pentaketide chromone, 5,7-dihydroxy-2-methylchromone, from five molecules of malonyl-CoA, was cloned and sequenced from aloe (Aloe arborescens). Site-directed mutagenesis revealed that Met207 (corresponding to Thr197 in CHS) determines the polyketide chain length and the product specificity of the enzyme; remarkably, replacement of a single amino acid residue, Met207, with Gly yielded a mutant enzyme that efficiently produces aromatic octaketides, SEK4 and SEK4b, the products of the minimal PKS for actinorhodin (act from Streptomyces coelicolor), from eight molecules of malonyl-CoA. This provided new insights into the catalytic functions and specificities of the CHS-superfamily type III PKS enzymes.