α-Glucosylated 6-gingerol: chemoenzymatic synthesis using α-glucosidase from Halomonas sp. H11, and its physical properties
作者:Teruyo Ojima、Kenta Aizawa、Wataru Saburi、Takeshi Yamamoto
DOI:10.1016/j.carres.2012.03.012
日期:2012.6
6-Gingerol [(S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)decan-3-one] is a biologically active compound and is abundant in the rhizomes of ginger (Zingiber officinale). It has some beneficial functions in healthcare, but its use is limited because of its insolubility in water and its heat-instability. To improve these physical properties, the glucosylation of 6-gingerol was investigated using alpha-glucosidases (EC. 3.2.1.20) from Aspergillus niger, Aspergillus nidulans ABPU1, Acremonium strictum, Halomonas sp. H11, and Saccharomyces cerevisiae, and cyclodextrin glucanotransferases (CGTase, EC. 2.4.1.19) from Bacillus coagulans, Bacillus sp. No. 38-2, Bacillus clarkii 7364, and Geobacillus stearothermophilus. Among these, only alpha-glucosidase from Halomonas sp. H11 (HaG) transferred a glucosyl moiety to 6-gingerol, and produced glucosylated compounds. The chemical structure of the reaction product, determined by nuclear magnetic resonance spectroscopy and mass spectrometry, was (S)-5-(O-alpha-D-glucopyranosyl)-1-(4-hydroxy-3-methoxyphenyl) decan-3-one (5-alpha-Glc-gingerol). Notably, the regioisomer formed by glucosylation of the phenolic OH was not observed at all, indicating that HaG specifically transferred the glucose moiety to the 5-OH of the beta-hydroxy keto group in 6-gingerol. Almost 60% of the original 6-gingerol was converted into 5-alpha-Glc-gingerol by the reaction. In contrast to 6-gingerol, 5-alpha-Glc-gingerol, in the form of an orange powder prepared by freeze-drying, was water-soluble and stable at room temperature. It was also more stable than 6-gingerol under acidic conditions and to heat. (C) 2012 Elsevier Ltd. All rights reserved.