Novel S-Xanthenyl Protecting Groups for Cysteine and Their Applications for the Nα-9-Fluorenylmethyloxycarbonyl (Fmoc) Strategy of Peptide Synthesis1-3
摘要:
The 9H-xanthen-9-yl (Xan) and 2-methoxy-9H-xanthen-9-yl (2-Moxan) groups can be introduced onto sulfhydryl functions by S-alkylation reactions involving the corresponding xanthydrols, plus trifluoroacetic acid (TFA) as catalyst. Conversely, these groups are removed rapidly by acid in the presence of appropriate silane or thiol scavengers. The 3-methoxy-9H-xanthen-9-yl (3-Moxan) derivative was also studied, but abandoned for several reasons including challenging synthesis, excessive lability to acid, and insufficient stability in the presence of base. The N-alpha-9-fluorenyl-methyloxycarbonyl (Fmoc), S-Xan or 2-Moxan-protected cysteine derivatives were prepared and applied to the solid-phase syntheses of several model peptides. Selective removal of S-Xan and S-2-Moxan groups, while retaining tris(alkoxybenzyl)amide (PAL) anchoring, is best accomplished with TFA-CH2Cl2-Et3SiH (1:98.5:0.5), 25 degrees C, 2 h. Alternatively, oxidative deprotection of S-Xan or S-2-Moxan with iodine (10-20 equiv) or thallium(III) tris(trifluoroacetate) [Tl(tfa)(3)] (1-3 equiv) to provide disulfides can be carried out on peptide substrates both in solution and while polymer-bound. Compared to established chemistries with the acid-labile and oxidizable S-triphenylmethyl (Trt) group, S-Xan and S-2-Moxan gave equal or superior results in terms of peptide purities (including no detectable tryptophan alkylation) and overall yields.
Xanthan-ester and acridan substrates for horseradish peroxidase
申请人:Tropix, Inc.
公开号:US06162610A1
公开(公告)日:2000-12-19
Xanthan esters and acridans are substrates for horseradish peroxidase. These stable, enzymatically cleavable chemiluminescent esters are substrates for horseradish peroxidase which, together with peroxide is among the extensively used enzyme in enzyme-linked detection methods, including immunoassays, oligonucleotide detection and nucleic acid hybridization. The novel compounds are used, together with peroxide, alkali and the peroxidase, to indicate the presence and/or concentration of target compounds. The assays may be enhanced by the use of polymeric quaternary onium enhancement compounds or similar compounds selected to enhance the chemiluminescence emitted.
A direct synthesis of substituted xanthenes from salicylaldehydes and cyclohexenones or tetralones has been developed. The reaction is catalysed by Lewis acids like scandium triflate and furnishes substituted xanthenes in good to excellent yields using either microwave or thermal heating. Microwave heating results in significantly shortened reaction times of 30 min and generally higher yields.
Visible-Light-Induced Aerobic Oxidation of Benzylic C(sp3)–H of Alkylarenes Promoted by DDQ, tert-Butyl Nitrite, and Acetic Acid
作者:Zhenlu Shen、Decheng Pan、Yiqing Wang、Meichao Li、Xinquan Hu、Nan Sun、Liqun Jin、Baoxiang Hu
DOI:10.1055/s-0037-1610678
日期:2019.1
photocatalytic aerobic oxidation of benzylic C(sp3)–H bonds proceeded in the presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, tert-butyl nitrite, and acetic acid. Advantages of this aerobic oxidation method include its relatively mild conditions, the use of visible-light irradiation instead of conventional thermal methods, the use of a low catalyst loading, and the ability to oxidize a range of alkylarenes
graphene oxide (GO)‐based materials for C−Ccross‐coupling represents a significant advance in carbocatalysis. Although GO has been used widely in various catalytic reactions, the scope of reactions reported is quite narrow, and the relationships between the type of functional groups present and the specific activity of the GO are not well understood. Herein, we explore CH−CH‐type cross‐coupling of xanthenes