摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-methoxy-9-(trimethylsilyl)-(E,Z)-1,7-nonadiene | 134922-93-3

中文名称
——
中文别名
——
英文名称
1-methoxy-9-(trimethylsilyl)-(E,Z)-1,7-nonadiene
英文别名
——
1-methoxy-9-(trimethylsilyl)-(E,Z)-1,7-nonadiene化学式
CAS
134922-93-3
化学式
C13H26OSi
mdl
——
分子量
226.434
InChiKey
JAKKHQCPFVJXGQ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.6
  • 重原子数:
    15.0
  • 可旋转键数:
    8.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.69
  • 拓扑面积:
    9.23
  • 氢给体数:
    0.0
  • 氢受体数:
    1.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    1-tosyl-7-(trimethylsilyl)-(E,Z)-5-heptene 在 正丁基锂二异丁基氢化铝 作用下, 以 正己烷二甲基亚砜 为溶剂, 反应 98.0h, 生成 1-methoxy-9-(trimethylsilyl)-(E,Z)-1,7-nonadiene
    参考文献:
    名称:
    Intramolecular anodic olefin coupling reactions: a useful method for carbon-carbon bond formation
    摘要:
    The utility of intramolecular anodic olefin coupling reactions for effecting carbon-carbon bond formation has been examined. All of the successful cyclizations studied utilized either an alkyl or silyl enol ether as one of the participating olefins. The enol ethers could be coupled to simple alkyl olefins, styrenes, and allylsilanes in isolated yields ranging from 57 to 84%. The reactions were found to be effective for generating both five- and six-membered rings. The best conditions for cyclization utilized a reticulated vitreous carbon anode, constant-current conditions in an undivided cell, and a lithium perchlorate in either 50% methanol/tetrahydrofuran or 20% methanol/dichloromethane electrolyte solution. The use of an allylsilane as one of the participating olefins allowed for the regiospecific formation of olefinic products. In addition to the olefinic products, these reactions produced a small amount of a cyclized ether product in which the silyl group had not been eliminated. Deuterium-labeling studies showed that at least half of this ether byproduct arose from intramolecular migration of the methoxy group that was initially part of the starting enol ether to the carbon-beta to the silyl group. Intramolecular migration reactions of this type were found to participate in a number of the reported cyclization reactions.
    DOI:
    10.1021/ja00019a038
点击查看最新优质反应信息

文献信息

  • Intramolecular anodic olefin coupling reactions: a useful method for carbon-carbon bond formation
    作者:Christine M. Hudson、Mohammad R. Marzabadi、Kevin D. Moeller、Dallas G. New
    DOI:10.1021/ja00019a038
    日期:1991.9
    The utility of intramolecular anodic olefin coupling reactions for effecting carbon-carbon bond formation has been examined. All of the successful cyclizations studied utilized either an alkyl or silyl enol ether as one of the participating olefins. The enol ethers could be coupled to simple alkyl olefins, styrenes, and allylsilanes in isolated yields ranging from 57 to 84%. The reactions were found to be effective for generating both five- and six-membered rings. The best conditions for cyclization utilized a reticulated vitreous carbon anode, constant-current conditions in an undivided cell, and a lithium perchlorate in either 50% methanol/tetrahydrofuran or 20% methanol/dichloromethane electrolyte solution. The use of an allylsilane as one of the participating olefins allowed for the regiospecific formation of olefinic products. In addition to the olefinic products, these reactions produced a small amount of a cyclized ether product in which the silyl group had not been eliminated. Deuterium-labeling studies showed that at least half of this ether byproduct arose from intramolecular migration of the methoxy group that was initially part of the starting enol ether to the carbon-beta to the silyl group. Intramolecular migration reactions of this type were found to participate in a number of the reported cyclization reactions.
查看更多