摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

6,13-双(2-噻吩基)并五苯 | 849466-79-1

中文名称
6,13-双(2-噻吩基)并五苯
中文别名
——
英文名称
6,13-di(thiophen-2-yl)pentacene
英文别名
6,13-di(2'-thienyl)pentacene;6,13-di(2-thienyl)-pentacene;6,13-dithien-2-ylpentacene;2-(13-thien-2-ylpentacene-6-yl)thiophene;6,13-Bis(2-thienyl)pentacene;2-(13-thiophen-2-ylpentacen-6-yl)thiophene
6,13-双(2-噻吩基)并五苯化学式
CAS
849466-79-1
化学式
C30H18S2
mdl
——
分子量
442.605
InChiKey
UFJVWUVXQAZPRV-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    300-305 °C
  • 沸点:
    615.0±50.0 °C(Predicted)
  • 密度:
    1.319±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    9.6
  • 重原子数:
    32
  • 可旋转键数:
    2
  • 环数:
    7.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    56.5
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    6,13-双(2-噻吩基)并五苯氧气 作用下, 以 二氯甲烷 为溶剂, 反应 2.0h, 以81%的产率得到
    参考文献:
    名称:
    芳基取代的并五苯衍生物的光氧化和复制
    摘要:
    制备了在6,13位被芳基取代的并五苯衍生物,并研究了它们的电子性质以及与氧的光加成反应。被2-噻吩基和苯基取代的并五苯衍生物在光照下与溶液中的氧反应,得到其内过氧化物。这些一阶动力学常数经评估为1.5×10 -3  s -1和2.7×10 -3  s -1。具有五氟苯基的并五苯衍生物在溶液中相对稳定。具有2-噻吩基的内过氧化物的热解和光解在溶液中得到并五苯衍生物,其产率分别为30%和44%。另外,研究了内过氧化物薄膜的紫外线照射(254 nm),这表明并五苯衍生物的复制。
    DOI:
    10.1016/j.tet.2007.07.021
  • 作为产物:
    描述:
    6,13-di(2-thienyl)-6,13-pentacenediolsodium hypophosphite溶剂黄146 、 sodium iodide 作用下, 反应 1.0h, 以87%的产率得到6,13-双(2-噻吩基)并五苯
    参考文献:
    名称:
    Reduction versus Rearrangement of 6,13-Dihydro-6,13-diarylpentacene-6,13-diols Affording 6,13- and 13,13′-Substituted Pentacene Derivatives
    摘要:
    并五苯具有优异的半导电特性,但在有机薄膜晶体管(OTFT)中的实际应用引发了诸多问题,主要由其对氧气的敏感性和极低的溶解度所致。为了解决使用并五苯所涉及的问题,在6位和13位引入了不同的芳基取代基。对于富电子芳基取代基,并五苯环系的形成可能伴随着起始的二氢并五苯二醇重排为13,13′-二取代的并五苯-6-酮。此外,还制备了6-单取代的并五苯。
    DOI:
    10.1055/s-2004-836055
点击查看最新优质反应信息

文献信息

  • 6,13-Bis(thienyl)pentacene compounds
    申请人:Vogel E. Dennis
    公开号:US20070023748A1
    公开(公告)日:2007-02-01
    6,13-bis(thienyl)pentacene compounds are described that can be used as a semiconductor material. Semiconductor devices that contain the 6,13-bis(thienyl)pentacene compounds and methods of making such semiconductor devices are also described.
    描述了可以用作半导体材料的6,13-双(噻吩基)化合物。还描述了含有6,13-双(噻吩基)化合物的半导体器件以及制造这种半导体器件的方法。
  • Application of Zirconacyclopentadienes (Metalla-heterocycles) and Cross-Coupling for the Convenient Preparative Method of 6,13-Disubstituted Pentacene
    作者:Tamotsu Takahashi、Zhiying Jia、Shi Li、Kiyohiko Nakajima、Ken-ichiro Kanno、Zhiyi Song
    DOI:10.3987/com-12-s(n)130
    日期:——
    Iodination of zirconacyclopentadiene derivative gave diiododiene derivative. The product was lithiated with t-BuLi and treated with diiodonaphthalene successively to afford 6,13-bis(trimethylsilyl)-5,14-dihydropentacene. A 6,13-diiodo-5,14-dihydropentacene was synthesized by iodination of 6,13-bis(trimethylsilyl)-5,14-dihydropentacene with ICl. This diiododihydropentacene was used for the introduction of substituent at 6 and 13 positions by the cross-coupling reactions with Pd catalyst. After aromatization by a combination of DDQ and gamma-terpinene or triethylamine, 6,13-disubstituted pentacene derivatives were synthesized.
  • New Oligothiophene-Pentacene Hybrids as Highly Stable and Soluble Organic Semiconductors
    作者:Jing Wang、Ke Liu、Yi-Yang Liu、Cheng-Li Song、Zi-Fa Shi、Jun-Biao Peng、Hao-Li Zhang、Xiao-Ping Cao
    DOI:10.1021/ol900838a
    日期:2009.6.18
    Two series of new oligothiophene-pentacene hybrid compounds were successfully synthesized and characterized, which consist of pentacene and anthradithiophene skeletons modified by different oligothienyl groups at 6,13 sites or 5,11 sites, respectively. Their optical, thermal, and electrochemical properties show regular variations with the length change of the side groups. These materials exhibit much higher solubility and significantly improved thermal and photooxidation stabilities compared with unmodified pentacene and anthradithiophene.
  • Organization of Acenes with a Cruciform Assembly Motif
    作者:Qian Miao、Xiaoliu Chi、Shengxiong Xiao、Roswitha Zeis、Michael Lefenfeld、Theo Siegrist、Michael L. Steigerwald、Colin Nuckolls
    DOI:10.1021/ja0570786
    日期:2006.2.1
    This study explores the assembly in the crystalline state of a class of pentacenes that are substituted along their long edges with aromatic rings forming rigid, cruciform molecules. The crystals were grown from the gas phase, and their structures were compared with DFT-optimized geometries. Both crystallographic and computed structures show that a planar acene core is the exception rather than the rule. In the assembly of these molecules, the phenyl groups block the herringbone motif and further guide the arrangement of the acene core into higher order structures. The packing for the phenyl-substituted derivatives is dictated by close contacts between the C-H's of the pendant aromatic rings and the carbons at the fusions in the acene backbone. Using thiciphene substituents instead of phenyls creates cofacially stacked acenes. In thin films, the thiophene-substituted derivative forms devices with good electrical properties: relatively high mobility, high ON/OFF ratios, and low threshold voltage for device activation. An unusual result is obtained for the decaphenyl pentacene when devices are fabricated on its crystalline surface. Although its acene cores are well isolated from each other, this material still exhibits good electrical properties.
  • Increased photooxidation stability of pentacene derivatives linked with aromatic groups for OTFTs
    作者:Dong-Su Kim、Ji Eun Jung、Nam Seob Baek、Tae-Dong Kim
    DOI:10.1016/j.orgel.2014.11.025
    日期:2015.2
    Pentacene derivatives linked with aromatic groups at the 6,13-positions have been synthesized and characterized for their photooxidation properties. They exhibit high solubility which provides low-cost solution deposition methods. However, most of them are highly susceptible to photooxidation in solution determined with a few minutes of their half-life time under ambient conditions, practically precluding them from solution fabrication applications. Interestingly, their photooxidation stability can be significantly increased by blocking out light. The thin film transistor device for 3,4,5-trifluorophenyl-substituted pentacene (2c) showed the highest mobility of 1.1 x 10(-2) cm(2) V-1 s(-1) with the threshold voltage of 20 V when it was prepared in the dark condition. (C) 2014 Elsevier B.V. All rights reserved.
查看更多

同类化合物

并六苯 并五苯 十四氟并五苯 二苯并[去,St]并五苯 二苯并[hi,wx]庚省 二苯并[fg,qr]戊省 二苯并[a,l]并五苯 二苯并[a,c]戊省 7,14-二苯并五苯 6,13-双(三甲硅基乙炔基)并五苯 6,13-双(三异丙基甲硅烷基乙炔基)并五苯 6,13-双(2-噻吩基)并五苯 6,13-二氯并五苯 2,3,9,10-四(4-叔丁基苯基)并五苯 1,4,8,11-戊省四酮,6,13-二己基-2,3,9,10-四甲基- 5-[4-(4,4,5,5-tetramethyl[1,3,2]dioxaborolan-2-yl)phenyl]-14-phenylpentacene 5-(4-decyloxy-phenyl)-14-phenyl-pentacene 1,2,3,4,9,10-Hexaphenyl-anthracene 1,4-bis(trimethylsilyl)-2,3-dimethylnaphthacene 6,6’-bipentacene Tri(propan-2-yl)-[2-[7,14,24,31-tetraphenyl-19-[2-tri(propan-2-yl)silylethynyl]-2-nonacyclo[18.14.0.03,18.05,16.06,15.08,13.022,33.023,32.025,30]tetratriaconta-1,3,5(16),6,8,10,12,14,17,19,21,23,25,27,29,31,33-heptadecaenyl]ethynyl]silane Tri(propan-2-yl)-[2-[7,18,28,39-tetraphenyl-23-[2-tri(propan-2-yl)silylethynyl]-2-undecacyclo[22.18.0.03,22.05,20.06,19.08,17.010,15.026,41.027,40.029,38.031,36]dotetraconta-1,3,5(20),6,8,10,12,14,16,18,21,23,25,27,29,31,33,35,37,39,41-henicosaenyl]ethynyl]silane 6,13-bis(triisobutylsilylethynyl)pentacene 1,4-Bis(2,2-dimethylpropoxy)anthracene 2,3-dibromo-6,13-bis(diphenylmethylene)-9,10-bis(dodecyloxy)-6,13-dihydropentacene dimethyl-2,3 diacetoxy-1,4 naphtacene 2,9-didecylpentacene 2,9-diundecylpentacene 2,9-dioctylpentacene 7-Ethyl-heptaphen 2,9-dibutylpentacene 8,9,10-Trichlorocyclohept-s-indacen 2,9-dipentylpentacene 2,3-bis(hexadecyloxy)-5,12-diphenyltetracene naphthacene; compound with antimony (V)-chloride 6,13-bis[4-(trimethylsilylethynyl)phenyl]pentacene 2,8-di(2-(trimethylsilyl)ethylthio)tetracene 2,8-di(acetylthio)tetracene 6,13-bis(cyclopropyldiisopropylsilylethynyl)pentacene naphthacene-5,6-diol 2-(2-(trimethylsilyl)ethylthio)tetracene 6,7,14,15,22,23-Hexamethoxyanthra<2,3-j>heptaphen 2,9-diheptylpentacene 5,14-diphenyl-7,12-bis(2-(triethylsilyl)ethyl)pentacene 5,8-difluorobenzophenanthrene 6,13-bis((1-methylenepropyl)diisopropylsilylethynyl)pentacene