N-(3-Triethoxysilylpropyl)-4-(isothiocyanatomethyl)-cyclohexane-1-carboxamide (TPICC): A heterobifunctional reagent for immobilization of biomolecules on glass surface
摘要:
An efficient heterobifunctional reagent, N-(3-triethoxysilylpropyl)-4-(isothiocyanatomethyl) cyclohexane1-carboxamide (TPICC) has been developed by a simple 'two step reaction' for the preparation of bioconjugates and immobilization of biomolecules such as oligonucleotides, peptides and proteins on the glass surface. The isothiocyanate functionality at one end of the reagent, TPICC was found specific for the ligands having either aminoalkyl (RNH2) or me]rcaptoalkyl (R-SH) functionality. The synthesis of bioconjugates with the reagent was achieved through its isothiocyanate functionality at one end via the formation of stable thiourea linkage with aminoalkyl and dithiocarbamate linkage with mercaptoalkyl derivatives. The triethoxysilyl functionality of the reagent has been utilized for specific coupling with the virgin glass surface by a very simple methodology. (C) 2008 Elsevier Ltd. All rights reserved.
Immobilization of self-quenched DNA hairpin probe with a heterobifunctional reagent on a glass surface for sensitive detection of oligonucleotides
作者:Arvind Misra、Mohammad Shahid
DOI:10.1016/j.bmc.2009.07.015
日期:2009.8
A new sensitive method for the detection of nucleic acids on a glass surface has been described. The self-quenched DNA hairpin probe is immobilized on a glass surface utilizing heterobifunctional reagent, N-(3-triethoxysilylpropyl)-4-(isothiocyanatomethyl)-cyclohexane-1-carboxamide (TPICC). In the closed state fluorescence intensity was quenched due to the presence of guanosine residues in close vicinity of fluorophore while on hybridization with perfectly matched complementary target strand fluorescence was restored. Efficiency and specificity of immobilization as well as thermal stability at variable temperature and pH conditions have been discussed in detail. The method employed has potential for the detection of single nucleotide variations and other diagnostic studies. (C) 2009 Elsevier Ltd. All rights reserved.