Orally Active Benzamide Antipsychotic Agents with Affinity for Dopamine D2, Serotonin 5-HT1A, and Adrenergic α1 Receptors
摘要:
New antipsychotic drugs are needed because current therapy is ineffective for many schizophrenics and because treatment is often accompanied by extrapyramidal symptoms and dyskinesias. This paper describes the design, synthesis, and evaluation of a series of related (aminomethyl)benzamides in assays predictive of antipsychotic activity in humans. These compounds had notable affinity for dopamine D-2, serotonin 5-HT1A, and alpha(1)-adrenergic receptors. The arylpiperazine 1-[3-[[4-[2-(1-methylethoxy)phenyl]-1-piperazinyl]methyl]benzoyl]piperidine (mazapertine, 6) was chosen because of its overall profile for evaluation in human clinical trials. The corresponding 4-arylpiperidine derivative 67 was also highly active indicating that the aniline nitrogen of 6 is not required for activity. Other particularly active structures include homopiperidine amide 14 and N-methylcyclohexylamide 31.
Orally Active Benzamide Antipsychotic Agents with Affinity for Dopamine D2, Serotonin 5-HT1A, and Adrenergic α1 Receptors
摘要:
New antipsychotic drugs are needed because current therapy is ineffective for many schizophrenics and because treatment is often accompanied by extrapyramidal symptoms and dyskinesias. This paper describes the design, synthesis, and evaluation of a series of related (aminomethyl)benzamides in assays predictive of antipsychotic activity in humans. These compounds had notable affinity for dopamine D-2, serotonin 5-HT1A, and alpha(1)-adrenergic receptors. The arylpiperazine 1-[3-[[4-[2-(1-methylethoxy)phenyl]-1-piperazinyl]methyl]benzoyl]piperidine (mazapertine, 6) was chosen because of its overall profile for evaluation in human clinical trials. The corresponding 4-arylpiperidine derivative 67 was also highly active indicating that the aniline nitrogen of 6 is not required for activity. Other particularly active structures include homopiperidine amide 14 and N-methylcyclohexylamide 31.
Orally Active Benzamide Antipsychotic Agents with Affinity for Dopamine D<sub>2</sub>, Serotonin 5-HT<sub>1A</sub>, and Adrenergic α<sub>1</sub> Receptors
作者:Allen B. Reitz、Ellen W. Baxter、Ellen E. Codd、Coralie B. Davis、Alfonzo D. Jordan、Bruce E. Maryanoff、Cynthia A. Maryanoff、Mark E. McDonnell、Eugene T. Powell、Michael J. Renzi、Mary R. Schott、Malcolm K. Scott、Richard P. Shank、Jeffry L. Vaught
DOI:10.1021/jm970164z
日期:1998.6.1
New antipsychotic drugs are needed because current therapy is ineffective for many schizophrenics and because treatment is often accompanied by extrapyramidal symptoms and dyskinesias. This paper describes the design, synthesis, and evaluation of a series of related (aminomethyl)benzamides in assays predictive of antipsychotic activity in humans. These compounds had notable affinity for dopamine D-2, serotonin 5-HT1A, and alpha(1)-adrenergic receptors. The arylpiperazine 1-[3-[[4-[2-(1-methylethoxy)phenyl]-1-piperazinyl]methyl]benzoyl]piperidine (mazapertine, 6) was chosen because of its overall profile for evaluation in human clinical trials. The corresponding 4-arylpiperidine derivative 67 was also highly active indicating that the aniline nitrogen of 6 is not required for activity. Other particularly active structures include homopiperidine amide 14 and N-methylcyclohexylamide 31.