摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-benzyl-3-(carbomethoxymethyl)-3-methyl-2-piperidinone | 175912-69-3

中文名称
——
中文别名
——
英文名称
N-benzyl-3-(carbomethoxymethyl)-3-methyl-2-piperidinone
英文别名
Methyl 2-(1-benzyl-3-methyl-2-oxopiperidin-3-yl)acetate
N-benzyl-3-(carbomethoxymethyl)-3-methyl-2-piperidinone化学式
CAS
175912-69-3
化学式
C16H21NO3
mdl
——
分子量
275.348
InChiKey
ZCPGOJWPURGJMO-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.9
  • 重原子数:
    20
  • 可旋转键数:
    5
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    46.6
  • 氢给体数:
    0
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    N-benzyl-3-(carbomethoxymethyl)-3-methyl-2-piperidinone 在 rhodium(II) acetate dimer 作用下, 以 二氯甲烷 为溶剂, 反应 2.0h, 生成 dimethyl 1-benzyl-7,9a-dihydroxy-4a-methyl-6-oxo-3,4,5,7-tetrahydro-2H-cyclohepta[b]pyridine-8,9-dicarboxylate
    参考文献:
    名称:
    A Novel Cycloaddition Reaction of α-Diazo-γ-amido Ketones Catalyzed by Rhodium(II) Acetate. Scope and Mechanistic Details of the Process
    摘要:
    alpha-Diazo ketones containing an amido group in the gamma-position have been found to undergo a novel rhodium(II)-catalyzed cycloaddition reaction. Intramolecular cyclization of the keto carbenoid onto the oxygen atom of the amide group generates a carbonyl ylide dipole as a transient species. This highly stabilized dipole does not readily undergo 1,3-dipolar cycloaddition but rather transfers a proton to produce a cyclic ketene N,O-acetal. The ketene acetal is unstable to moisture and upon standing is readily hydrolyzed to a gamma-keto delta-lactone and an amine. In the absence of any significant amount of water, the ketene N,O-acetal undergoes conjugate addition with the activated st-bond of the dipolarophile to give a zwitterion intermediate. The anionic portion of the zwitterion adds to the neighboring carbonyl group. This is followed by epoxide ring formation with charge dissipation leading to an amido-substituted spiro cyclopentyl epoxide. In certain cases a hydroxy lactone was also isolated and its formation can be attributed to the competitive hydrolysis of the zwitterionic intermediate. The Rh(II)-catalyzed reaction of the diazo ketoamide derived from N-benzylpiperidone with DMAD afforded two different types of cycloadducts. In addition to the spiro cyclopentyl epoxide, a product derived from trapping of the carbonyl ylide dipole was also obtained, thereby providing additional support for the proposed mechanism.
    DOI:
    10.1021/jo952078h
  • 作为产物:
    参考文献:
    名称:
    A Novel Cycloaddition Reaction of α-Diazo-γ-amido Ketones Catalyzed by Rhodium(II) Acetate. Scope and Mechanistic Details of the Process
    摘要:
    alpha-Diazo ketones containing an amido group in the gamma-position have been found to undergo a novel rhodium(II)-catalyzed cycloaddition reaction. Intramolecular cyclization of the keto carbenoid onto the oxygen atom of the amide group generates a carbonyl ylide dipole as a transient species. This highly stabilized dipole does not readily undergo 1,3-dipolar cycloaddition but rather transfers a proton to produce a cyclic ketene N,O-acetal. The ketene acetal is unstable to moisture and upon standing is readily hydrolyzed to a gamma-keto delta-lactone and an amine. In the absence of any significant amount of water, the ketene N,O-acetal undergoes conjugate addition with the activated st-bond of the dipolarophile to give a zwitterion intermediate. The anionic portion of the zwitterion adds to the neighboring carbonyl group. This is followed by epoxide ring formation with charge dissipation leading to an amido-substituted spiro cyclopentyl epoxide. In certain cases a hydroxy lactone was also isolated and its formation can be attributed to the competitive hydrolysis of the zwitterionic intermediate. The Rh(II)-catalyzed reaction of the diazo ketoamide derived from N-benzylpiperidone with DMAD afforded two different types of cycloadducts. In addition to the spiro cyclopentyl epoxide, a product derived from trapping of the carbonyl ylide dipole was also obtained, thereby providing additional support for the proposed mechanism.
    DOI:
    10.1021/jo952078h
点击查看最新优质反应信息

文献信息

  • A Novel Cycloaddition Reaction of α-Diazo-γ-amido Ketones Catalyzed by Rhodium(II) Acetate. Scope and Mechanistic Details of the Process
    作者:Albert Padwa、Alan T. Price、Lin Zhi
    DOI:10.1021/jo952078h
    日期:1996.1.1
    alpha-Diazo ketones containing an amido group in the gamma-position have been found to undergo a novel rhodium(II)-catalyzed cycloaddition reaction. Intramolecular cyclization of the keto carbenoid onto the oxygen atom of the amide group generates a carbonyl ylide dipole as a transient species. This highly stabilized dipole does not readily undergo 1,3-dipolar cycloaddition but rather transfers a proton to produce a cyclic ketene N,O-acetal. The ketene acetal is unstable to moisture and upon standing is readily hydrolyzed to a gamma-keto delta-lactone and an amine. In the absence of any significant amount of water, the ketene N,O-acetal undergoes conjugate addition with the activated st-bond of the dipolarophile to give a zwitterion intermediate. The anionic portion of the zwitterion adds to the neighboring carbonyl group. This is followed by epoxide ring formation with charge dissipation leading to an amido-substituted spiro cyclopentyl epoxide. In certain cases a hydroxy lactone was also isolated and its formation can be attributed to the competitive hydrolysis of the zwitterionic intermediate. The Rh(II)-catalyzed reaction of the diazo ketoamide derived from N-benzylpiperidone with DMAD afforded two different types of cycloadducts. In addition to the spiro cyclopentyl epoxide, a product derived from trapping of the carbonyl ylide dipole was also obtained, thereby providing additional support for the proposed mechanism.
查看更多