摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,1-dimethyl-1-(2-propen-1-yl)silanol | 64185-05-3

中文名称
——
中文别名
——
英文名称
1,1-dimethyl-1-(2-propen-1-yl)silanol
英文别名
allyldimethylsilanol;Silanol, allyldimethyl-;hydroxy-dimethyl-prop-2-enylsilane
1,1-dimethyl-1-(2-propen-1-yl)silanol化学式
CAS
64185-05-3
化学式
C5H12OSi
mdl
——
分子量
116.235
InChiKey
IUMBYTFREODQIP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    134 °C
  • 密度:
    0.833±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.37
  • 重原子数:
    7
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.6
  • 拓扑面积:
    20.2
  • 氢给体数:
    1
  • 氢受体数:
    1

SDS

SDS:850d65f0338995f658559d85408f89b2
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1,1-dimethyl-1-(2-propen-1-yl)silanol 在 sodium hydride 作用下, 以 四氢呋喃 为溶剂, 反应 0.67h, 以89%的产率得到sodium 1,1-dimethyl-1-(2-propen-1-yl)silanolate
    参考文献:
    名称:
    Cross-Coupling of Aromatic Bromides with Allylic Silanolate Salts
    摘要:
    The sodium salts of allyldimethylsilanol and 2-butenyldimethylsilanol undergo palladium-catalyzed cross-coupling with a wide variety of aryl bromides to afford allylated and crotylated arenes. The coupling of both silanolates required extensive optimization to deliver the expected products in high yields. The reaction of the allyldimethylsilanolate takes place at 85 degrees C in 1,2-dimethoxyethane with allylpalladium chloride dimer (2.5 mol %) to afford 73-95% yields of the allylation products. Both electron-rich and sterically hindered bromides reacted smoothly, whereas electron-poor bromides cross-coupled in poor yield because of a secondary isomerization to the 1-propenyl isomer (and subsequent polymerization). The 2-butenyldimethylsilanolate (E/Z, 80:20) required additional optimization to maximize the formation of the branched (gamma-substitution) product. A remarkable influence of added alkenes (dibenzylideneacetone and norbornadiene) led to good selectivities for electron-rich and electron-poor bromides in 40-83% yields. However, bromides containing coordinating groups (particularly in the ortho position) gave lower, and in one case even reversed, selectivity. Configurationally homogeneous (E)-silanolates gave slightly higher gamma-selectivity than the pure (2)-silanolates. A unified mechanistic picture involving initial gamma-transmetalation followed by direct reductive elimination or sigma-pi isomerization can rationalize all of the observed trends.
    DOI:
    10.1021/ja805951j
  • 作为产物:
    描述:
    烯丙基二甲基氯硅烷乙醚 为溶剂, 反应 0.08h, 以90%的产率得到1,1-dimethyl-1-(2-propen-1-yl)silanol
    参考文献:
    名称:
    Cross-Coupling of Aromatic Bromides with Allylic Silanolate Salts
    摘要:
    The sodium salts of allyldimethylsilanol and 2-butenyldimethylsilanol undergo palladium-catalyzed cross-coupling with a wide variety of aryl bromides to afford allylated and crotylated arenes. The coupling of both silanolates required extensive optimization to deliver the expected products in high yields. The reaction of the allyldimethylsilanolate takes place at 85 degrees C in 1,2-dimethoxyethane with allylpalladium chloride dimer (2.5 mol %) to afford 73-95% yields of the allylation products. Both electron-rich and sterically hindered bromides reacted smoothly, whereas electron-poor bromides cross-coupled in poor yield because of a secondary isomerization to the 1-propenyl isomer (and subsequent polymerization). The 2-butenyldimethylsilanolate (E/Z, 80:20) required additional optimization to maximize the formation of the branched (gamma-substitution) product. A remarkable influence of added alkenes (dibenzylideneacetone and norbornadiene) led to good selectivities for electron-rich and electron-poor bromides in 40-83% yields. However, bromides containing coordinating groups (particularly in the ortho position) gave lower, and in one case even reversed, selectivity. Configurationally homogeneous (E)-silanolates gave slightly higher gamma-selectivity than the pure (2)-silanolates. A unified mechanistic picture involving initial gamma-transmetalation followed by direct reductive elimination or sigma-pi isomerization can rationalize all of the observed trends.
    DOI:
    10.1021/ja805951j
点击查看最新优质反应信息

文献信息

  • Organocatalytic Oxidation of Organosilanes to Silanols
    作者:Dimitris Limnios、Christoforos G. Kokotos
    DOI:10.1021/cs400515w
    日期:2013.10.4
    The oxidation of organosilanes to silanols constitutes an attractive transformation for both industry and academia. Bypassing the need for stoichiometric oxidants or precious metal catalytic complexes, the first organocatalytic oxidation of silanes has been accomplished. Catalytic amounts of 2,2,2-trifluoroacetophenone, in combination with the green oxidant H2O2, lead to excellent to quantitative yields
    有机硅烷氧化为硅烷醇构成了工业界和学术界的诱人转变。绕过对化学计量的氧化剂或贵属催化络合物的需求,已经完成了硅烷的第一有机催化氧化。催化量的2,2,2-三氟苯乙酮与绿色氧化剂H 2 O 2结合,可在较短的反应时间内达到极佳的定量收率。可以容许各种烷基,芳基,烯基和炔基取代基,从而为高度希望的转化提供了一种简单,廉价,有效和实用的解决方案。
  • Supported gold nanoparticle catalyst for the selective oxidation of silanes to silanols in water
    作者:Takato Mitsudome、Akifumi Noujima、Tomoo Mizugaki、Koichiro Jitsukawa、Kiyotomi Kaneda
    DOI:10.1039/b910208f
    日期:——
    Hydroxyapatite-supported gold nanoparticles (AuHAP) can act as highly efficient and reusable catalysts for the oxidation of diverse silanes into silanols in water; this is the first catalytic methodology for the selective synthesis of aliphatic silanols using water under organic-solvent-free conditions.
    羟基磷灰石负载的纳米颗粒(AuHAP)可以作为高效且可重复使用的催化剂,用于将多种硅烷氧化为中的硅烷醇。这是在无有机溶剂的条件下用选择性合成脂肪族硅烷醇的第一种催化方法。
  • Lewis acid-catalyzed one-pot crossed Prins cyclizations using allylchlorosilane as allylating agent
    作者:Kok-Ping Chan、Teck-Peng Loh
    DOI:10.1016/j.tetlet.2004.09.049
    日期:2004.11
    A one-pot multi-component Lewis acid-catalyzed Prins cyclization was developed with high yield and selectivity. The crossed 2,4,6-trisubstituted tetrahydropyran products were formed with high stereoselectivity. This catalytic method could also be used with α,β-unsaturated aldehydes affording moderate yields of products.
    单锅多组分路易斯酸催化Prins环化开发具有高收率和选择性。以高的立体选择性形成交叉的2,4,6-三取代的四氢吡喃产物。该催化方法也可用于α,β-不饱和醛,可提供中等收率的产物。
  • Selective oxidation of silanes into silanols with water using [MnBr(CO)<sub>5</sub>] as a precatalyst
    作者:Emanuele Antico、Markus Leutzsch、Niklas Wessel、Thomas Weyhermüller、Christophe Werlé、Walter Leitner
    DOI:10.1039/d2sc05959b
    日期:——
    silanes to silanols with water as an oxidant generating valuable hydrogen as the only by-product continues to be a challenge. Here, we demonstrate that [MnBr(CO)5] is a highly active precatalyst for this reaction, operating under neutral conditions and avoiding the undesired formation of siloxanes. As a result, a broad substrate scope, including primary and secondary silanes, could be converted to the
    开发地球丰富的催化剂,以作为氧化剂将硅烷选择性转化为硅烷醇,产生有价值的氢气作为唯一的副产物,这仍然是一个挑战。在这里,我们证明 [MnBr(CO) 5 ] 是该反应的高活性预催化剂,可在中性条件下操作并避免形成不需要的硅氧烷。因此,广泛的底物范围,包括伯硅烷和仲硅烷,都可以转化为所需的产品。还检查了催化剂的周转性能,产生了 4088 h -1的最大 TOF 。基于反应动力学(包括 PhMe 2的 KIE),对 [MnBr(CO) 5 ] 和 Si-H 键之间相互作用的争论机制进行了新的阐述SiD 和 D 2 O) 和光谱技术(FT-IR、GC-TCD、1 H-、29 Si- 和13 C-NMR)。[MnBr(CO) 5 ]的初始活化被发现是由 ( I ) 氢化物和 R 3 SiBr的形成引起的,实验数据与包含阳离子三羰基 Mn ( I )的催化循环最一致单元作为活动框架。
  • Synthesis of difunctional borasiloxanes and their behavior in metathesis reactions
    作者:Anne-Françoise Mingotaud、Valérie Héroguez、Alain Soum
    DOI:10.1016/s0022-328x(98)00498-7
    日期:1998.6
    New divinyl- and diallyl-borasiloxanes have been synthesized in good yield from corresponding boronic acids. They have been characterized by H-1-, C-13-, Si-29- and B-11-NMR, as well as by MS. Their behavior in metathesis reactions initiated by two different catalysts ([RhCl(COD)](2) for vinylsiloxanes and [Mo] Schrock's catalyst for allylsiloxanes) has been studied. This has led to new cycloborasiloxanes that have been characterized. (C) 1998 Elsevier Science S.A. All rights reserved.
查看更多

同类化合物

(2-溴乙氧基)-特丁基二甲基硅烷 鲸蜡基聚二甲基硅氧烷 骨化醇杂质DCP 马沙骨化醇中间体 马来酸双(三甲硅烷)酯 顺式-二氯二(二甲基硒醚)铂(II) 顺-N-(1-(2-乙氧基乙基)-3-甲基-4-哌啶基)-N-苯基苯酰胺 降钙素杂质13 降冰片烯基乙基三甲氧基硅烷 降冰片烯基乙基-POSS 间-氨基苯基三甲氧基硅烷 镓,二(1,1-二甲基乙基)甲基- 镁,氯[[二甲基(1-甲基乙氧基)甲硅烷基]甲基]- 锑,二溴三丁基- 铷,[三(三甲基甲硅烷基)甲基]- 铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷 钾(4-{[二甲基(2-甲基-2-丙基)硅烷基]氧基}-1-丁炔-1-基)(三氟)硼酸酯(1-) 金刚烷基乙基三氯硅烷 酰氧基丙基双封头 达格列净杂质 辛醛,8-[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]- 辛甲基-1,4-二氧杂-2,3,5,6-四硅杂环己烷 辛基铵甲烷砷酸盐 辛基衍生化硅胶(C8)ZORBAX?LP100/40C8 辛基硅三醇 辛基甲基二乙氧基硅烷 辛基三甲氧基硅烷 辛基三氯硅烷 辛基(三苯基)硅烷 辛乙基三硅氧烷 路易氏剂-3 路易氏剂-2 路易士剂 试剂Cyanomethyl[3-(trimethoxysilyl)propyl]trithiocarbonate 试剂3-[Tris(trimethylsiloxy)silyl]propylvinylcarbamate 试剂3-(Trimethoxysilyl)propylvinylcarbamate 试剂2-(Trimethylsilyl)cyclopent-2-en-1-one 试剂11-Azidoundecyltriethoxysilane 西甲硅油杂质14 衣康酸二(三甲基硅基)酯 苯胺,4-[2-(三乙氧基甲硅烷基)乙基]- 苯磺酸,羟基-,盐,单钠聚合甲醛,1,3,5-三嗪-2,4,6-三胺和脲 苯甲醇,a-[(三苯代甲硅烷基)甲基]- 苯并磷杂硅杂英,5,10-二氢-10,10-二甲基-5-苯基- 苯基二甲基氯硅烷 苯基二甲基乙氧基硅 苯基二甲基(2'-甲氧基乙氧基)硅烷 苯基乙酰氧基三甲基硅烷 苯基三辛基硅烷 苯基三甲氧基硅烷