Tyrphostins. 6. Dimeric Benzylidenemalononitrile Tyrphostins: Potent Inhibitors of EGF Receptor Tyrosine Kinase in Vitro
摘要:
Benzylidenemalononitrile (BMN) tyrphostins were previously found to be potent inhibitors of EGF receptor (EGFR) tyrosine kinase activity. Since these compounds were found to compete for the substrate and sometimes with the ATP site and since EGFR acts as a dimer, we prepared a series of dimeric tyrphostins. These dimeric tyrphostins were built from two BMN units linked by various spacers and designed to fit the dimeric cross-autophosphorylation signal transduction intermediate of the EGFR tyrosine kinases. Structure-activity relationship of these potent dimeric EGF receptor tyrosine kinase inhibitors is reported.
Tyrphostins. 6. Dimeric Benzylidenemalononitrile Tyrphostins: Potent Inhibitors of EGF Receptor Tyrosine Kinase in Vitro
摘要:
Benzylidenemalononitrile (BMN) tyrphostins were previously found to be potent inhibitors of EGF receptor (EGFR) tyrosine kinase activity. Since these compounds were found to compete for the substrate and sometimes with the ATP site and since EGFR acts as a dimer, we prepared a series of dimeric tyrphostins. These dimeric tyrphostins were built from two BMN units linked by various spacers and designed to fit the dimeric cross-autophosphorylation signal transduction intermediate of the EGFR tyrosine kinases. Structure-activity relationship of these potent dimeric EGF receptor tyrosine kinase inhibitors is reported.
In silico screening of a c ollection of 1584 academic compounds identified a small molecule hit for the human adenosine A(2A) receptor (pK(i) = 6.2) containing a novel chromene scaffold (3a). To explore the structure activity relationships of this new chemical series for adenosine receptors, a focused library of 43 2H-chromene-3-carboxamide derivatives was synthesized and tested in radioligand binding assays at human adenosine A(1), A(2A), A(2B) and A(3) receptors. The series was found to be enriched with bioactive compounds for adenosine receptors, with 14 molecules showing submicromolar affinity (pK(i) >= 6.0) for at least one adenosine receptor subtype. These results provide evidence that the chromene scaffold, a core structure present in natural products from a wide variety of plants, vegetables, and fruits, constitutes a valuable source for novel therapeutic agents. (C) 2012 Elsevier Masson SAS. All rights reserved.
Benzylidenemalononitrile (BMN) tyrphostins were previously found to be potent inhibitors of EGF receptor (EGFR) tyrosine kinase activity. Since these compounds were found to compete for the substrate and sometimes with the ATP site and since EGFR acts as a dimer, we prepared a series of dimeric tyrphostins. These dimeric tyrphostins were built from two BMN units linked by various spacers and designed to fit the dimeric cross-autophosphorylation signal transduction intermediate of the EGFR tyrosine kinases. Structure-activity relationship of these potent dimeric EGF receptor tyrosine kinase inhibitors is reported.