Synthesis of Azobenzenes Using <i>N</i>-Chlorosuccinimide and 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU)
作者:Alford Antoine John、Qing Lin
DOI:10.1021/acs.joc.7b01530
日期:2017.9.15
A convenient method for the synthesis of symmetrical azobenzenes is reported. This one-step procedure involves treatment of anilines with N-chlorosuccinimide (NCS) and organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). A wide range of commercially available substituted anilines readily participate in this reaction to produce the corresponding azobenzenes in moderate-to-excellent yields in minutes
The palladium and copper contrast: a twist to products of different chemotypes and altered mechanistic pathways
作者:Kapileswar Seth、Sudipta Raha Roy、Asim Kumar、Asit K. Chakraborti
DOI:10.1039/c6cy00415f
日期:——
Unprecedented Pd–Ag/Cu–Ag nanocluster-catalyst switch leads to a phenazine/azoarene twist for non-radical mode C–H activation vs. radical mode N–N self-coupling of anilines.
The transformation of nitrobenzenes into azobenzenes by pyridine-derived super electron donor 2 is described. This method provides an efficient synthesis of azobenzenes because of not requiring the use of expensive transition-metals, toxic or flammable reagents, or harsh conditions. Moreover, when using 2-fluoronitrobenzenes as substrates, phenazines were found to be obtained. The process affords a
Transition Metal-Free Oxidative Coupling of Primary Amines in Polyethylene Glycol at Room Temperature: Synthesis of Imines, Azobenzenes, Benzothiazoles, and Disulfides
作者:Abhinandan D. Hudwekar、Praveen K. Verma、Jaspreet Kour、Shilpi Balgotra、Sanghapal D. Sawant
DOI:10.1002/ejoc.201801610
日期:2019.2.14
A transition metal‐free protocol has been developed for the oxidativecoupling of primary amines to imines and azobenzenes, thiols to disulfides, and 2‐aminothiophenols to benzothiazoles, offering excellent yields. The advantageous features of the present environmentally benign methodology include the usage of biocompatable and green reaction conditions such as solvent, room temperature reactions,
Substituted phenylazo and phenylazoxy compounds were systematically prepared and their anti-androgenic activity was measured in terms of (1) the growth-inhibiting effect on an androgen-dependent cell line, SC-3, and (2) the binding affinity of nuclear androgen receptor. Generally, azo/azoxy compounds showed cell toxicity, and the growth-inhibiting effects on SC-3 cells correlated with the toxicity. However, some compounds, including 4, 4'-dinitroazobenzene (25), 4, 4'-dimethoxyazobenzene (33), and 2, 2'-dichloroazoxybenzene (47), possessed potent anti-androgenic activity without apparent cell toxicity.