Effects of new ubiquinone-imidazo[2,1-b]thiazoles on mitochondrial complex I (NADH-ubiquinone reductase) and on mitochondrial permeability transition pore
摘要:
In this work we describe the synthesis of a series of imidazo[2,1-b]thiazoles and 2,3-dihydroimidazo[2,1-b]thiazoles connected by means of a methylene bridge to CoQ(0). These compounds were tested as specific inhibitors of the NADH:ubiquinone reductase activity in mitochondrial membranes. The imidazothiazole system when bound to the quinone ring in place of the isoprenoid lateral side chain, may increase the inhibitory effect (with an IC50 for NADH-Q(1) activity ranging between 0.25 and 0.96 muM) whereas the benzoquinone moiety seems to lose the capability to accept electrons from complex I as indicated by very low maximal velocity elicited by the compounds tested. Moreover the low rotenone sensitivity for almost all of these compounds suggests that they are only partially able to interact with the physiological ubiquinone-reduction site. The compounds were investigated for the capability of increasing the permeability transition of the inner mitochondrial membrane in isolated mitochondria. Unlike CoQ(0), which is considered a mitochondrial membrane permeability transition inhibitor, the new compounds were inducers. (C) 2004 Elsevier Ltd. All rights reserved.
Effects of new ubiquinone-imidazo[2,1-b]thiazoles on mitochondrial complex I (NADH-ubiquinone reductase) and on mitochondrial permeability transition pore
摘要:
In this work we describe the synthesis of a series of imidazo[2,1-b]thiazoles and 2,3-dihydroimidazo[2,1-b]thiazoles connected by means of a methylene bridge to CoQ(0). These compounds were tested as specific inhibitors of the NADH:ubiquinone reductase activity in mitochondrial membranes. The imidazothiazole system when bound to the quinone ring in place of the isoprenoid lateral side chain, may increase the inhibitory effect (with an IC50 for NADH-Q(1) activity ranging between 0.25 and 0.96 muM) whereas the benzoquinone moiety seems to lose the capability to accept electrons from complex I as indicated by very low maximal velocity elicited by the compounds tested. Moreover the low rotenone sensitivity for almost all of these compounds suggests that they are only partially able to interact with the physiological ubiquinone-reduction site. The compounds were investigated for the capability of increasing the permeability transition of the inner mitochondrial membrane in isolated mitochondria. Unlike CoQ(0), which is considered a mitochondrial membrane permeability transition inhibitor, the new compounds were inducers. (C) 2004 Elsevier Ltd. All rights reserved.
This paper reports the synthesis of a new series of 3-(5-imidazo[2,1-b]thiazolylmethylene)-2-indolinones which were tested as potential antitumor agents at the National Cancer Institute. Two derivatives are now under review by BEC (Biological Evaluation Committee of NCI). To investigate the mechanism of action, the effect on cell cycle progression was studied by monitoring them in colon adenocarcinoma
Imidazo[2,1-<i>b</i>]thiazole System: A Scaffold Endowing Dihydropyridines with Selective Cardiodepressant Activity
作者:Roberta Budriesi、Pierfranco Ioan、Alessandra Locatelli、Sandro Cosconati、Alberto Leoni、Maria P. Ugenti、Aldo Andreani、Rosanna Di Toro、Andrea Bedini、Santi Spampinato、Luciana Marinelli、Ettore Novellino、Alberto Chiarini
DOI:10.1021/jm070681+
日期:2008.3.1
The synthesis, characterization, and functional in vitro assays in cardiac tissues and smooth muscle (vascular and nonvascular) of a number of 4-imidazo[2,1-b]thiazole-1,4-dihydropyridines are reported. The binding properties for the novel compounds have been investigated and the interaction with the binding site common to other aryl-dihydropyridines has been demonstrated. Interestingly, the novel 4-aryl-dihydropyridines are L-type calcium channel blockers with a peculiar pharmacological behavior. Indeed, the imidazo[2,1-b]thiazole system is found to confer to the dihydropyridine scaffold an inotropic and/or chronotropic cardiovascular activity with a high selectivity toward the nonvascular tissue. Finally, molecular modeling studies were undertaken for the most representative compounds with the aim of describing the binding properties of the new ligands at molecular level and to rationalize the found structure-activity relationship data. Due to the observed pharmacological behavior of our compounds, they might be promising agents for the treatment of specific cardiovascular pathologies such as cardiac hypertrophy and ischemia.
Effects of new ubiquinone-imidazo[2,1-b]thiazoles on mitochondrial complex I (NADH-ubiquinone reductase) and on mitochondrial permeability transition pore
In this work we describe the synthesis of a series of imidazo[2,1-b]thiazoles and 2,3-dihydroimidazo[2,1-b]thiazoles connected by means of a methylene bridge to CoQ(0). These compounds were tested as specific inhibitors of the NADH:ubiquinone reductase activity in mitochondrial membranes. The imidazothiazole system when bound to the quinone ring in place of the isoprenoid lateral side chain, may increase the inhibitory effect (with an IC50 for NADH-Q(1) activity ranging between 0.25 and 0.96 muM) whereas the benzoquinone moiety seems to lose the capability to accept electrons from complex I as indicated by very low maximal velocity elicited by the compounds tested. Moreover the low rotenone sensitivity for almost all of these compounds suggests that they are only partially able to interact with the physiological ubiquinone-reduction site. The compounds were investigated for the capability of increasing the permeability transition of the inner mitochondrial membrane in isolated mitochondria. Unlike CoQ(0), which is considered a mitochondrial membrane permeability transition inhibitor, the new compounds were inducers. (C) 2004 Elsevier Ltd. All rights reserved.