摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 152387-41-2

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
152387-41-2
化学式
C18H42Si4Sn
mdl
——
分子量
489.583
InChiKey
OEZHCVDYLONIPM-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.89
  • 重原子数:
    23
  • 可旋转键数:
    6
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.78
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

反应信息

  • 作为反应物:
    描述:
    乙醚 为溶剂, 以72%的产率得到
    参考文献:
    名称:
    A Palladium-Catalyzed Stannole Synthesis
    摘要:
    A palladium-catalyzed (2 + 2 + 1) cycloaddition reaction of two C2H2 and one SnR(2) to form C-unsubstituted stannoles (C4H4)SnR(2) [R = CH(SiMe(3))(2) 2a, R(2) = {C(SiMe(3))(2)CH2}(2) 2c] is described. Catalysts are (R'(2)PC(2)H(4)PR'(2))Pd complexes (slow reaction) and (R'P-3)(2)Pd complexes (fast reaction). The mechanism of the catalysis has been elucidated in detail from stoichiometric reactions based on R = CH(SiMe(3))(2). For the [(R'(2)PC(2)H(4)PR'(2))Pd]-catalyzed system, the starting Pd(0)-ethene complexes (R'(2)PC(2)H(4)PR'(2))Pd(C2H4) (R' = Pr-i (3),(t)Bu (4)) react both with ethyne to give the Pd(0)-ethyne derivatives (R'(2)PC(2)H(4)PR'(2))Pd(C2H2) (R' = Pr-i (5), (t)Bu (6)) and with SnR(2) to yield the Pd(0)-Sn(II) adducts (R'(2)PC(2)H(4)PR'(2))Pd=SnR(2) (R' = Pr-i (7), (t)Bu (8)). The Pd-Sn bond [2.481(2) Angstrom] of 7 is very short, indicative of partial multiple bonding. Subsequent reactions of the Pd(0)-ethyne complexes 5 and 6 with SnR(2) or of the Pd(0)-Sn(II) complexes 7 and 8 with ethyne afford the 1,2-palladastannete complexes (R'2PC2H4-PR'(2))Pd(CH=CH)SnR(2) (Pd-Sn) (R' = Pr-i (10), (t)Bu (11)). The derivative with R' = Me (9) has also been synthesized. In 10 a Pd-Sn single bond [2.670(1) Angstrom] is present. Complexes 10 and 11 (as well as 7 and 8 but not 9) react slowly with additional ethyne at 20 degrees C to reform the Pd(0)-ethyne complexes 5 and 6 with concomitant generation of the stannole (C4H4)SnR(2) (2a). Likely intermediates of this reaction are the Pd(0)-eta(2)-stannole complexes (R'(2)PC(2)H(4)PR'(2))Pd(eta(2)-C(4)H(4)SnR(2)) (R' = Pr-i (12), (t)Bu (13)), which have been synthesized independently. The stannole ligand in 12, 13 is easily displaced by ethyne to yield 5 or 6 or by SnR(2) to yield 7 or 8. Thus, the isolated complexes 5-8 and 10-13 are conceivable intermediates of the catalytic stannole formation, and from their stoichiometric reactions the catalysis cycle can be assembled. For the [(R'P-3)(2)Pd]-catayyze system, the corresponding intermediates (Me(3)P)(2)Pd(C2H2) (15), ((Pr3P)-Pr-i)(2)Pd(C2H2) (17), (Me(3)P)(2)Pd=SnR(2) (18), ((Pr3P)-Pr-i)(2)Pd=SnR(2) (20), and (Me(3)P)(2)Pd(CH=CH)SnR(2) (Pd-Sn) (19) have been isolated or detected by NMR, and ((Pr3P)-Pr-i)(2)Pd(CH=CH)SnR(2) (Pd-Sn) (21) is postulated as an intermediate. The [(Me(3)P)(2)Pd] system (stannole formation above 0 degrees C) is catalytically more active than any of the [(R'(2)PC(2)H(4)PR'(2))Pd] systems (slow stannole formation for R' = (t)Bu at 20 degrees C). Most active is the [((Pr3P)-Pr-i)(2)Pd] system, allowing a catalytic synthesis of the stannole 2a from SnR(2) and ethyne at -30 degrees C [1% of 17; yield 2a: 87%; TON (turnover number): 87].By carrying out the catalysis in pentane at 20 degrees C (0.04% of 17), the TON is increased to 1074 but the yield of 2a is diminished to 43% due to uncatalyzed thermal side reactions.
    DOI:
    10.1021/ja952495b
  • 作为产物:
    描述:
    参考文献:
    名称:
    A palladium-catalysed stannole synthesis: development and mechanism
    摘要:
    该论文描述了一种钯催化的司坦唑合成方法,并通过合成几种可想象的中间产物阐明了其机理,这些中间产物已被完全表征(核磁共振、X 射线结构分析)。
    DOI:
    10.1039/c39930001254
点击查看最新优质反应信息

文献信息

  • A palladium-catalysed stannole synthesis: development and mechanism
    作者:Jochen Krause、Christian Pluta、Klaus-R. Pörschke、Richard Goddard
    DOI:10.1039/c39930001254
    日期:——
    A palladium-catalysed stannole synthesis is described and its mechanism elucidated by the synthesis of several conceivable intermediates, which have been fully characterized (NMR, X-ray structure analyses).
    该论文描述了一种钯催化的司坦唑合成方法,并通过合成几种可想象的中间产物阐明了其机理,这些中间产物已被完全表征(核磁共振、X 射线结构分析)。
  • A Palladium-Catalyzed Stannole Synthesis
    作者:Jochen Krause、Karl-Josef Haack、Klaus-Richard Pörschke、Barbara Gabor、Richard Goddard、Christian Pluta、Klaus Seevogel
    DOI:10.1021/ja952495b
    日期:1996.1.1
    A palladium-catalyzed (2 + 2 + 1) cycloaddition reaction of two C2H2 and one SnR(2) to form C-unsubstituted stannoles (C4H4)SnR(2) [R = CH(SiMe(3))(2) 2a, R(2) = C(SiMe(3))(2)CH2}(2) 2c] is described. Catalysts are (R'(2)PC(2)H(4)PR'(2))Pd complexes (slow reaction) and (R'P-3)(2)Pd complexes (fast reaction). The mechanism of the catalysis has been elucidated in detail from stoichiometric reactions based on R = CH(SiMe(3))(2). For the [(R'(2)PC(2)H(4)PR'(2))Pd]-catalyzed system, the starting Pd(0)-ethene complexes (R'(2)PC(2)H(4)PR'(2))Pd(C2H4) (R' = Pr-i (3),(t)Bu (4)) react both with ethyne to give the Pd(0)-ethyne derivatives (R'(2)PC(2)H(4)PR'(2))Pd(C2H2) (R' = Pr-i (5), (t)Bu (6)) and with SnR(2) to yield the Pd(0)-Sn(II) adducts (R'(2)PC(2)H(4)PR'(2))Pd=SnR(2) (R' = Pr-i (7), (t)Bu (8)). The Pd-Sn bond [2.481(2) Angstrom] of 7 is very short, indicative of partial multiple bonding. Subsequent reactions of the Pd(0)-ethyne complexes 5 and 6 with SnR(2) or of the Pd(0)-Sn(II) complexes 7 and 8 with ethyne afford the 1,2-palladastannete complexes (R'2PC2H4-PR'(2))Pd(CH=CH)SnR(2) (Pd-Sn) (R' = Pr-i (10), (t)Bu (11)). The derivative with R' = Me (9) has also been synthesized. In 10 a Pd-Sn single bond [2.670(1) Angstrom] is present. Complexes 10 and 11 (as well as 7 and 8 but not 9) react slowly with additional ethyne at 20 degrees C to reform the Pd(0)-ethyne complexes 5 and 6 with concomitant generation of the stannole (C4H4)SnR(2) (2a). Likely intermediates of this reaction are the Pd(0)-eta(2)-stannole complexes (R'(2)PC(2)H(4)PR'(2))Pd(eta(2)-C(4)H(4)SnR(2)) (R' = Pr-i (12), (t)Bu (13)), which have been synthesized independently. The stannole ligand in 12, 13 is easily displaced by ethyne to yield 5 or 6 or by SnR(2) to yield 7 or 8. Thus, the isolated complexes 5-8 and 10-13 are conceivable intermediates of the catalytic stannole formation, and from their stoichiometric reactions the catalysis cycle can be assembled. For the [(R'P-3)(2)Pd]-catayyze system, the corresponding intermediates (Me(3)P)(2)Pd(C2H2) (15), ((Pr3P)-Pr-i)(2)Pd(C2H2) (17), (Me(3)P)(2)Pd=SnR(2) (18), ((Pr3P)-Pr-i)(2)Pd=SnR(2) (20), and (Me(3)P)(2)Pd(CH=CH)SnR(2) (Pd-Sn) (19) have been isolated or detected by NMR, and ((Pr3P)-Pr-i)(2)Pd(CH=CH)SnR(2) (Pd-Sn) (21) is postulated as an intermediate. The [(Me(3)P)(2)Pd] system (stannole formation above 0 degrees C) is catalytically more active than any of the [(R'(2)PC(2)H(4)PR'(2))Pd] systems (slow stannole formation for R' = (t)Bu at 20 degrees C). Most active is the [((Pr3P)-Pr-i)(2)Pd] system, allowing a catalytic synthesis of the stannole 2a from SnR(2) and ethyne at -30 degrees C [1% of 17; yield 2a: 87%; TON (turnover number): 87].By carrying out the catalysis in pentane at 20 degrees C (0.04% of 17), the TON is increased to 1074 but the yield of 2a is diminished to 43% due to uncatalyzed thermal side reactions.
查看更多

同类化合物

(2-溴乙氧基)-特丁基二甲基硅烷 骨化醇杂质DCP 马来酸双(三甲硅烷)酯 顺式-二氯二(二甲基硒醚)铂(II) 顺-N-(1-(2-乙氧基乙基)-3-甲基-4-哌啶基)-N-苯基苯酰胺 降钙素杂质13 降冰片烯基乙基三甲氧基硅烷 降冰片烯基乙基-POSS 间-氨基苯基三甲氧基硅烷 镁,氯[[二甲基(1-甲基乙氧基)甲硅烷基]甲基]- 锑,二溴三丁基- 铷,[三(三甲基甲硅烷基)甲基]- 铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷 钾(4-{[二甲基(2-甲基-2-丙基)硅烷基]氧基}-1-丁炔-1-基)(三氟)硼酸酯(1-) 金刚烷基乙基三氯硅烷 辛醛,8-[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]- 辛甲基-1,4-二氧杂-2,3,5,6-四硅杂环己烷 辛基铵甲烷砷酸盐 辛基衍生化硅胶(C8)ZORBAX?LP100/40C8 辛基硅三醇 辛基甲基二乙氧基硅烷 辛基三甲氧基硅烷 辛基三氯硅烷 辛基(三苯基)硅烷 辛乙基三硅氧烷 路易氏剂-3 路易氏剂-2 路易士剂 试剂3-[Tris(trimethylsiloxy)silyl]propylvinylcarbamate 试剂2-(Trimethylsilyl)cyclopent-2-en-1-one 试剂11-Azidoundecyltriethoxysilane 西甲硅油杂质14 衣康酸二(三甲基硅基)酯 苯胺,4-[2-(三乙氧基甲硅烷基)乙基]- 苯磺酸,羟基-,盐,单钠聚合甲醛,1,3,5-三嗪-2,4,6-三胺和脲 苯甲醇,a-[(三苯代甲硅烷基)甲基]- 苯基二甲基氯硅烷 苯基二甲基乙氧基硅 苯基乙酰氧基三甲基硅烷 苯基三辛基硅烷 苯基三甲氧基硅烷 苯基三乙氧基硅烷 苯基三丁酮肟基硅烷 苯基三(异丙烯氧基)硅烷 苯基三(2,2,2-三氟乙氧基)硅烷 苯基(3-氯丙基)二氯硅烷 苯基(1-哌啶基)甲硫酮 苯乙基三苯基硅烷 苯丙基乙基聚甲基硅氧烷 苯-1,3,5-三基三(三甲基硅烷)