摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,2,4-Trioxaspiro<4.5>decan | 177-12-8

中文名称
——
中文别名
——
英文名称
1,2,4-Trioxaspiro<4.5>decan
英文别名
1,2,4-Trioxaspiro[5.4]decane;1,2,4-trioxaspiro[4.5]decane;1,2,4-trioxa-spiro[4.5]decane;1,2,4-Trioxa-spiro[4.5]decan
1,2,4-Trioxaspiro<4.5>decan化学式
CAS
177-12-8
化学式
C7H12O3
mdl
——
分子量
144.17
InChiKey
VVNXNFDOBGGJRM-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    191.8±29.0 °C(Predicted)
  • 密度:
    1.14±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.6
  • 重原子数:
    10
  • 可旋转键数:
    0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    27.7
  • 氢给体数:
    0
  • 氢受体数:
    3

SDS

SDS:473f67e6f1af0e9be208bd95044f0d92
查看

反应信息

  • 作为反应物:
    描述:
    1,2,4-Trioxaspiro<4.5>decan 在 palladium on activated charcoal 4 A molecular sieve 、 氢气 作用下, 反应 6.0h, 生成 4-环己基吗啉
    参考文献:
    名称:
    The reactions of the ozonides with secondary amines: An efficient and novel way to prepare tertiary amine from mono- and 1,1-di-substituted alkenes via corresponding ozonides
    摘要:
    DOI:
    10.1016/s0040-4039(00)73982-7
  • 作为产物:
    描述:
    亚甲基环己烷臭氧 作用下, 以 乙醚 为溶剂, 以81%的产率得到1,2,4-Trioxaspiro<4.5>decan
    参考文献:
    名称:
    1-烷基取代的1-叔丁基乙烯和高度甲基化的亚甲基环烷烃的臭氧分解。取代基的空间体积对伯氮氧化物裂解方向的影响
    摘要:
    在醚中在三氟苯乙酮(7)存在下进行1-烷基取代的1-叔丁基乙烯和高度甲基化的亚甲基环烷烃的臭氧分解。2,2,6-三甲基-1-亚甲基环己烷的臭氧分解仅提供了用酮7捕获甲醛O-氧化物而获得的交叉臭氧化物10,产率为42%,而在相关2,2,5的情况下-三甲基-1-亚甲基环戊烷-由2,7,5-三甲基环戊酮O-氧化物与酮7加成环而获得的另一种交叉-臭氧化物15e是唯一可隔离的产品。两种可能的裂环作用过程的用于初级臭氧化物的总能量12C和12E,在B3LYP / 6-31G计算** // B3LYP / 3-21G *水平的理论,似乎重现碎片之间的区域化学所观察到的差异这两个主要的臭氧化物。
    DOI:
    10.1016/s0040-4020(01)01183-8
点击查看最新优质反应信息

文献信息

  • The mechanistic study and synthetic applications of the base treatment in the ozonolytic reactions
    作者:Yung-Son Hon、Sheng-Wun Lin、Ling Lu、Yao-Jung Chen
    DOI:10.1016/0040-4020(95)98699-i
    日期:1995.4
    E1cb mechanism is the overwhelming process in the reaction of bases and ozonides. As a quenching agent in the ozonolysis of a variety of alkenes, the reactions involving triethylamine often gave better yields and proceeded faster than those involving methyl sulfide. On the other hand, in the presence of 4 Å molecular sieves, the secondary amines reacted with mono- and 1,1-di-substituted ozonides to afford
    E1cb机制是碱和臭氧化物反应中的压倒性过程。作为各种烯烃的臭氧分解反应的淬灭剂,涉及三乙胺的反应通常比涉及甲基硫醚的反应收率更高,并且进行速度更快。另一方面,在4Å分子筛的存在下,仲胺与单和1,1-二取代的臭氧化物反应,以高收率提供还原性胺化产物。反应混合物中甲酸铵的形成也支持了臭氧化物与胺反应中的E1cb机理。
  • SnCl4-mediated reaction of ozonides with allyltrimethylsilane: formation of 1,2-dioxolanes
    作者:Patrick H. Dussault、Xuejun Liu
    DOI:10.1016/s0040-4039(99)01399-4
    日期:1999.9
    SnCl4-mediated reaction of ozonides (1,2,4-trioxolanes) with allyltrimethylsilane furnishes trimethylsilylmethyl-1,2-dioxolanes via metalated carbonyl oxides. The carbonyl oxides can arise through initial ionization of either the ether or peroxide oxygens.
    SnCl 4介导的臭氧化物(1,2,4-三氧戊环)与烯丙基三甲基硅烷的反应通过金属化的羰基氧化物提供了三甲基甲硅烷基甲基-1,2-二氧戊环。羰基氧化物可通过醚或过氧化物中氧的初始电离而产生。
  • Selectivity in Lewis acid-mediated fragmentations of peroxides and ozonides: application to the synthesis of alkenes, homoallyl ethers, and 1,2-dioxolanes †
    作者:Patrick H. Dussault、Hyung-Jae Lee、Xuejun Liu
    DOI:10.1039/b001391i
    日期:——
    Fragmentation of dialkyl peroxides and ozonides is strongly influenced by the choice of Lewis acid. TiCl4 promotes C–O ionization (SN1 reaction) of tertiary peroxides while SnCl4 and BF3·OEt2 promote O–O heterolysis (Hock reaction). The cationic intermediates are trapped with allyltrimethylsilane to afford allylated alkanes and homoallyl ethers. In the absence of a nucleophile, ozonides (1,2,4-trioxolanes) invariably undergo O–O heterolysis. However, the combination of allyltrimethylsilane and SnCl4 results in formation of 1,2-dioxolanes via trapping of intermediates derived from SN1 ionization.
    二烷基过氧化物和臭氧化物的断裂强烈受到路易斯酸选择的影响。TiCl4促进叔过氧化物的C-O离子化(SN1反应),而SnCl4和BF3·OEt2促进O-O异裂(Hock反应)。阳离子中间体被烯丙基三甲基硅烷捕获,得到烯丙基化的烷烃和同烯丙基醚。在缺少亲核试剂的情况下,臭氧化物(1,2,4-三氧杂环戊烷)不可避免地发生O-O异裂。然而,烯丙基三甲基硅烷和SnCl4的组合导致通过捕获SN1离子化产生的中等体形成1,2-二氧杂环戊烷。
  • An extremely efficient way to prepare conjugated carbonyl compounds from terminal alkenes via the reactions of ozonides, triethylamine and stable phosphorus ylides
    作者:Yung-Son Hon、Ling Lu
    DOI:10.1016/0040-4020(95)00431-7
    日期:1995.7
    Ozonides derived from mono- and 1,1-di-substitmed olefins reacted with triethylamine in the presence of nucleophiles, such as phosphorus ylide or phosphonoacetate to give conjugated carbonyl compounds almost instantaneously in excellent yields. These transformations were accelerated by the by-product (i.e. thermal energy and ammonium formate) generated in the reaction.
    衍生自单和1,1-二取代烯烃的臭氧与三乙胺在亲核试剂(例如磷化钾或膦酸乙酸酯)存在下与三乙胺反应,几乎立即以优异的收率得到共轭羰基化合物。反应中产生的副产物(即热能和甲酸铵)促进了这些转变。
  • Spiro and dispiro 1,2,4-trioxolane antimalarials
    申请人:Medicines for Malaria Ventures MMV
    公开号:US20040039008A1
    公开(公告)日:2004-02-26
    A means and method for treating malaria, schistosomiasis, and cancer using a spiro or dispiro 1,2,4-trioxolane is described. The preferred 1,2,4-trioxolanes include a spiroadamantane group on one side of the trioxolane group, and a spirocyclohexyl on the other side of the trioxolane group, whereby the spirocyclohexyl ring is preferably substituted at the 4-position. In comparison to artemisinin semisynthetic derivatives, the compounds of this invention are structurally simple, easy to synthesize, non-toxic, and potent against malarial parasites.
    本发明涉及使用螺环或二螺环1,2,4-三噁烷治疗疟疾、血吸虫病和癌症的方法和手段。首选的1,2,4-三噁烷包括一个螺环戊烷基团位于三噁烷基团的一侧,以及一个螺环己基团位于三噁烷基团的另一侧,其中螺环己环在4位处优选被取代。与青蒿素半合成衍生物相比,本发明的化合物结构简单,易于合成,无毒,并且对疟原虫具有强效作用。
查看更多

同类化合物

青蒿氧烷 甲基3-甲基-1,2,4-三氧杂环戊烷-3-羧酸酯 烯丙基苯臭氧化物 5-乙酰基-3,5-二甲基-1,2,4-三氧杂环戊烷-3-甲腈 3-苯基-1,2,4-三氧杂螺[5.4]癸烷 3-甲基-3-苯基-1,2,4-三氧杂螺[5.4]癸烷 3,5-二苯基-1,2,4-三氧杂环戊烷 3,3-二丁基-1,2,4-三氧杂螺[5.4]癸烷 1-异丙基-4-甲基-2,3,7-三氧杂双环[2.2.1]庚烷 1-(5-甲氧基-3-甲基-1,2,4-三四氢呋喃-3-基)乙酮 1-(5,5-二甲基-1,2,4-三四氢呋喃-3-基)乙酮 1-(3,5,5-三甲基-1,2,4-三四氢呋喃-3-基)乙酮 1,2,4-三噁戊环,3-(1-氯乙烯基)- cis-1,4-Dimethyl-2,3,17-trioxabicyclo<12.2.1>heptadecane trans-1,4-Dimethyl-2,3,17-trioxabicyclo<12.2.1>heptadecane adamantane-2-spiro-3'-8'-hydroxy-8'-methyl-1',2',4'-trioxaspiro[4.5]decane adamantane-2-spiro-3'-8'-hydroxy-1',2',4'-trioxaspiro[4.5]decane (3-methyl-1,2,4-trioxolan-3-yl)hexanal (3-methyl-5-phenyl-5-trifluoromethyl-1,2,4-trioxolan-3-yl)pentanal trioxolane 7 3-tert-butyl-3-methyl-5-phenyl-5-trifluoromethyl-1,2,4-trioxolane 3-Cyano-5-cyclohexyl-3-isobutyl-1,2,4-trioxolane 5'-Cyano-5'-isobutylspiro (trans-5-cyano-5-phenyl-1,2,4-trioxolan-3-yl)-3-cyclopentanecarbaldehyde 5'-Cyano-5'-phenylspiro 3-Cyano-3,5-diphenyl-1,2,4-trioxolane 3-Cyano-3-phenyl-5-tert-butyl-1,2,4-trioxolane 3-tert-Butyl-3-methyl-1,2,4-trioxaspiro[5.4]decane (trans-5-cyano-3,5-dimethyl-1,2,4-trioxolan-3-yl)hexanal (trans-5-cyano-5-methyl-1,2,4-trioxolan-3-yl)hexanal 3,5-dimethyl-5-(3-oxopropyl)-1,2,4-trioxolane-3-carbonitrile (trans-5-cyano-5-methyl-1,2,4-trioxolan-3-yl)pentanal 3-Cyano-3-methyl-5-phenyl-1,2,4-trioxolane 3-Cyano-5-cyclohexyl-3-methyl-1,2,4-trioxolane (E)-3-methyl-5-[7-oxohept-5-enyl]-1,2,4-trioxolane-3-carbonitrile (Z)-3-methyl-5-[5-oxopent-1-enyl]-1,2,4-trioxolane-3-carbonitrile (E)-3-methyl-5-[6-oxohex-4-enyl]-1,2,4-trioxolane-3-carbonitrile 3-methyl-5-[(E)-5-oxopent-3-enyl]-1,2,4-trioxolane-3-carbonitrile (Z)-3-methyl-5-[4-methyl-7-oxohept-3-enyl]-1,2,4-trioxolane-3-carbonitrile 3-(Chloromethyl)-3-methoxy-1,2,4-trioxolane cis-3,5-bis-(chloromethyl)-3,5-dimethoxy-1,2,4-trioxolane trans-3,5-bis-(chloromethyl)-3,5-dimethoxy-1,2,4-trioxolane cis-adamantane-2-spiro-3'-8'-[[(4'-formyl-1'-piperazinyl)carbonyl]methyl]-1',2',4'-trioxaspiro[4.5]decane adamantane-2-spiro-3’-8’-hydroxymethyl-1’,2’,4’-trioxaspiro[4,5]decane 3-(Chloromethyl)-3-fluoro-1,2,4-trioxolane trans-3,5-Bis(chloromethyl)-3-fluoro-1,2,4-trioxolane methyl spiro3,7>decane-2,3'-<1,2,4>trioxolane>-5'-carboxylate 3-Cyano-3-phenyl-1,2,4-trioxolane 3-ethyl-1,24-trioxolane dispiro[adamantane-2,2'-[1,3,5]trioxolane-4',1''-cyclohexane]-3''-ol